Популярные услуги

Нужна помощь по теоретической механике?

Подготовили для Вас видеоуроки по всем популярным темам!

К видеоурокам
Главная » Лекции » Физика » Теория механизмов машин » Элементы зубчатого колеса

Элементы зубчатого колеса

2021-03-09СтудИзба

Лекция 14.

Цилиндрические зубчатые передачи.

Передача непрерывного прошения от одного вала к другому с заданным переда­точным отношением чаще всего осуществляется с помощью зубчатых механизмов. Зубчатые механизмы получили очень широкое применение как в машиностроении, так и в приборостроении благодаря большой надежности и точности в воспроиз­ведения заданного закона движения. Если оси вращения валов параллельны, то применяется цилиндрическая зубчатая передача, аксоидами колес которой являют­ся цилиндры. Такая передача относится к категории плоских механизмов. В лекциях 14-16 излагаются основы синтеза цилиндрической зубчатой передачи по заданному передаточному отношению. Эти основы называются геометрическим расчетом зубчатой передачи.

Элементы зубчатого колеса.

Цилиндрические   зубчатые передачи, как отмечалось ранее, могут быть внешнего и внутреннего зацеплений. Следует также указать реечное зацепление, разграничительное между внешним и внутренним зацеплениями. Простая зубчатая передача имеет два подвижных звена, которыми являются зубчатые колеса. Рассмотрим элементы зубчатого колеса (рис. 14.l).

Поверхность (1), отделяющая зубья от тела зубчатого колеса, называется поверхностью впадин зубьев. Поверхность (2), ограничивающая зубья со стороны, противоположной телу зубчато­го колеса, - поверхность вершин зубьев. Пространство между двумя соседними зубьями (3) - впадина. Поверхность, ограничи­вающая зуб со стороны впадины (4), называется боковой поверхностью зуба.

Боковая поверхность состоит из главной (5) и переход­ной (6) поверхностей. Главная поверхность - это та часть бо­ковой поверхности зуба, которая, взаимодействуя с главной по­верхностью другого зуба, обеспечивает заданное передаточное от­ношение. Переходная поверхность соединяет главную поверхность с поверхностью впадин.

Главной поверхностью чаще всего является эвольвентная по­верхность. так как среди цилиндрических передач особое рас­пространение получили эвольвентные цилиндрические передачи. Объясняется это тем, что они имеют весьма значительные преиму­щества перед другими передачами. Так, эвольвентные передачи допускают, в определенных пределах, изменение межосевого расстояния, сохраняя при этом по­стоянство передаточного отноше­ния, чего другие передачи не до­пускают, и обладают хорошими эксплуатационными качествами. Изготовление эвольвентных колес и инструмента для их нарезания является наиболее простым, что имеет очень важное практическое значение.

Рекомендуемые материалы

FREE
5.149
Элементы цепи, схема которой изображена на рис. 3.9, имеют следующие значения: e1 = 2 В, e2 = 3 В, R1 = 3 кОм, R2 = 2 кОм. Определить показание вольтметра, если его внутреннее сопротивление 5 кОм. Внутренними сопротивлениями источников тока пренебреч
Определить силу избыточного гидростатического давления на заслонку размерами a x b (a = 16 см, b = 14 см), закрывающую отверстие в стенке резервуара с бензином плотностью ρ = 800 кг/м3. Высота слоя бензина до начала заслонки h = 11 м. Построить эпюру
Элементы цепи, схемы которых изображены на рис, имеют следующие значения: ε1= 2В; ε2 =2,2В; R1= 1,5кОм, R2 = 2,2кОм. Определить показание вольтметра, если его сопротивление RV= 2кОм. Внутренним сопротивлением источников напряжений пренебречь.
Определить направление истечения жидкости (ρ = ρвод) через отверстие do = 5 мм и расход, если разность уровней H = 2 м, показание вакуумметра pвак соответствует 147 мм рт. ст., показание манометра pм = 0,25 МПа, коэффициент расхода μ = 0,62.
FREE
Задача 1.52:Точка А находится на ободе колеса радиуса R = 0,50 м, которое катится без скольжения по горизонтальной

Рис. 14.2lect_14_2.jpg

Рассмотрим образование эвольвентных поверхностей, которые будут являться главными поверх­ностями прямого и косого зубьев. На рис. 14.2, а в перспективе по­казана главная поверхность прямого зуба, которую можно пред­ставить как совокупность совершенно одинаковых эвольвент (Э, Э'), расположенных в плоскостях, перпендикулярных оси колеса. Эти эвольвенты являются траекториями точек образующей прямой КК', принадлежащей плоскости N, которая перекатывается по основ­ному цилиндру 1 без скольжения. Начальные точки всех эвольвент распола-гаются на образующей KbKb основного ци-линдра. Пересе­чение главной поверхности прямого зуба с любым соосным ци­линдром 2 происходит по образующей этого цилиндра (например, прямая КК'). Эта прямая параллельна оси колеса и называется линией прямого зуба. Главная поверхность прямого зуба является эвольвентной линейчатой цилиндрической поверхностью.

Рис. 14.3
lect_14_3.jpg

Главная поверхность косого зуба (рис. 14.2, б) также может быть представлена как совокупность одинаковых эвольвент (Э, Э'), расположенных в плоскостях, перпендикулярных оси колеса; од­нако в этом случае образующая прямая КК' расположена на плоскости N под некоторым углом к оси колеса. Благодаря этому при перекатывании плоскости N по основному цилиндру 1 без скольжения начальные точки эвольвент располагаются по винтовой линии KbKb на основном цилиндре. В пересечении с любым соос­ным цилиндром 2 главная поверхность косого зуба образует вин­товую линию КК*, называемую линией косого зуба. Главная по­верхность косого зуба является эвольвентной линейчатой винтовой поверхностью.

Таким образом, основное сходство главных поверхностей пря­мого и косого зубьев состоит в том, что в любом торцовом сече­нии, т. е. в сечении плоскостью, перпендикулярной оси колеса, они имеют эвольвенту.

На рис. 14.3, а изображено зубчатое колесо с внешними зубья­ми. Наибольший радиус ra имеет окружность вершин. На рис. 14,3. б изображено зубчатое колесо с внутренними зубьями. В этом случае тело колеса имеет форму кольца, внутрь полости которого зубья обращены своими вершинами. Поэтому радиус ra окружности вер­шин внутренних зубьев меньше радиуса rf окружности впадин, ко­торый является, таким образом, наибольшим. На рис. 14.3 изобра­жены также эвольвентный профиль зуба, основная окружность, на базе которой он построен (радиус rb), а также делительная окружность радиуса г и окружность произвольного радиуса ry.

На рис. 14.З буквой  обозначен KON, равный углу профиля зуба в точке K, находящейся на делительной окружности прямозубого колеса. Этот угол стандартизован и ра­вен 20°. Таким образом, делительная окружность прямозубого ко­леса является той окружностью, которая пересекает профиль зуба в точке, для которой угол профиля равен стандартному углу =20°.

Если длину окружностей - делительной, основной и произволь­ного радиуса - поделить на число зубьев z, то получим расстояния между профилями двух соседних зубьев, называемые шагом, т. е. получим шаг по делительной окружности р, шаг по основной ок­ружности pb и шаг по окружности произвольного радиуса py. Дуги р, pb и py соответствуют одному и тому же угловому шагу = p/r = pb/rb = py/ry.  Отсюда следует, что шаги пропорциональны радиусам соответствующих окружностей. Угловой шаг мож­но выразить и так: = 360°/z.

Важным элементом колеса является шаг по делительной окруж­ности. Выразим длину делительной окружности через шаг р и число зубьев колеса z: 2r = pz. Отсюда диаметр делительной окружности d = (p/)*z = mz. Отношение  p/ обозначают буквой m и называют модулем зубьев колеса (единица модуля - мм). Мо­дуль стандартизован, причем стандарт предусматривает целый ряд значений модуля. Через модуль выражают радиус делительной окружности и все линейные размеры как колеса, так и передачи:

                                                       r = m*z/2 ;                                              (14.1)

                                                       p = *m.                                                (14.2)

         Радиус основной окружности находится из KON (рис. 14.3, а):

                                                                                 (14.3)

         Радиус произвольной окружности колеса выражается следующим образом:

                                                                              (14.4)

Так как шаги пропорциональны радиусам, то шаг по основной окружности:

а шаг по окружности произвольного радиуса:

                                                                              (14.5)

Основными параметрами колес являются модуль m и число зубьев z. Размеры делительных окружностей характеризуют раз­меры колес и передачи. Поскольку модуль определяется из прочностного расчета, а число зубьев назначает конструктор, то для уменьшения габаритов зубчатой передачи надо уменьшать числа зубьев ее колес [см. уравнение (14.1]

Для колес с внутренними зубьями радиусы основной и дели­тельной окружностей и шаги по этим окружностям определяют но тем же формулам, что и для колеса с внешними зубьями.

Шаг зубьев колеса по любой окружности можно представить как сумму толщины зуба sy и ширины впадины ey, т. е.

Колеса одного и того же модуля, имеющие одно и то же число зубьев, могут отличаться друг от друга толщиной зуба по дели­тельной окружности.

Различают:

1) колеса с равноделенным шагом, у которых по делительной окружности толщина зуба равна ширине впадины и, следовательно, половине шага

s = e = m/2;

2) колеса, у которых s > е, т. е. s > m/2;

3) колеса, у которых s < е, т. е. s < m/2.

На рис. 14.3, в изображены центральные углы 2 и 2у, соответствующие дуговым толщинам зуба s и sу, а также эвольвентные углы inv и invy. Из рисунка следует:

*b =  + inv = y + invy

отсюда

*y = * + inv - invy

          Выражая угловые толщины через линейные *y = sy/(2ry) и *= s/(2r) и подставляя из значения в уравнение, ранее составленное для *y, получим формулу для определения толщины внешнего зуба:

                                      sy = ry (s/r + 2inv - 2 invy)                                 (14.6)

          Аналогично составляется формула для определения толщины sy внутреннего зуба:

                                      sy = ry (s/r - 2inv + 2 invy)

lect_14_4.jpg

Если безгранично увели­чивать число зубьев колеса, а следовательно, и радиусы всех окружностей, то в пре­деле при z =  все окруж­ности преобразуются в па­раллельные прямые, а эвольвентный профиль зуба ста­нет прямолинейным, что имеет очень важное практическое значение. При z =  получим зубчатую рейку (рис. 14.4). В любом месте прямолинейной части зуба рейки профильный угол будет одним и тем же, равным .

Рис. 14.4Прямая UU, по которой толщина зуба рейки в точности равна ширине впадины, т. е. равна половине шага, называется делитель­ной прямой. Шаг зубьев рейки, измеренный по любой прямой, па­раллельной делительной, имеет одинаковое значение p =m. Шаг рейки, замеренный по нормали n-n к ее профилю, равен mcos, т.е.  равен шагу рb по основной окружности колеса, модуль которого такой же, как и модуль рейки.

Основные положения станочного зацепления.

Реечное станочное зацепление.

Способы изготовления зубчатых колес. В настоящее время зубчатые колеса изготавливают способами ко­пирования и огибания.

По первому способу изготовляют зубчатые колеса в основном только с равноделенным шагом. При этом большинство их вы­полняется с заведомой погрешностью. Второй способ - способ огибания такими существенными недостатками не обладает: этим спо­собом можно изготовить самые разнообразные зубчатые колеса и притом теоретически точно. Поэтому способ огибания нашел распространение и представляет особый интерес.

При способе огибания заготовке, из которой изготовляют зуб­чатое колесо, и режущему инструменту, имеющему зубчатую форму (червячная фреза, гребенка, долбяк), сообщают на станке такие движения относительно друг друга, которые воспроизводят процесс зацепления. Это зацепление называют станочным.

Помимо движений, воспроизводящих процесс зацепления ин­струменту сообщается еще технологическое движение резания. При этом режущие кромки инструмента описывают по­верхность, называемую производящей. Укажем, что производящая поверхность и изготавливаемая боковая поверхность зуба являются взаимоогибаемыми, откуда сам способ и получил свое наименование.

При расчете геометрических параметров элементов высшей кинематической пары учитывают технологиче­ские возможности изготовления деталей на формообразующих станках (металлорежущих, прокатных станах, прессах и т. д.). Геометрия соответствующего формообразующего инструмента тес­ным образом связана с производящими поверхностями. Для инструментов, осуществляющих процесс формообразова­ния путем срезания стружки, такой производящей поверхностью является воображаемая поверхность, содержащая режущие кромки инструмента или образуемая при их главном движении, необходи­мом для резания. Если режущие кромки - прямые, а главное дви­жение - прямолинейное, то производящей поверхностью является плоскость. Если режущие кромки криволинейные, а главное дви­жение - прямолинейное, то производящей поверхностью является цилиндрическая поверхность (например, эвольвентная поверхность для долбяков).

Зацепление проектируемой поверхности зубьев с производящей поверхностью по аналогии с зацеплением нарезаемого колеса с производящей поверхностью режущего инструмента называют станочным зацеплением. Этот термин был предложен В. А. Гавриленко, крупным ученым, обобщившим и развившим основные положения теории зацепления эвольвентных передач. Сущность станочного зацепления заключается в том, что про­изводящая поверхность (поверхность режущих кромок инструмен­та) и проектируемая поверхность зуба («нарезаемого» колеса) имеют такое же относительное движение, какое имели бы зубчатые колеса при зацеплении друг с другом при взаимодействии аксоидных поверхностей.

При нарезании цилиндрических зубчатых колес оси произво­дящего колеса (т. е. воображаемого зубчатого колеса, у которого боковые поверхности являются производящими поверхностями) и проектируемого («нарезаемого») колеса параллельны между собой и аксоидами являются цилиндры. Если производящее колесо имеет конечное число зубьев, то режущими инструментами являются долбяк (рис. 14.5 е), абразивный хон (рис, 14.5 ж), которыми можно обрабатывать боковые поверхности зубьев колес с различными числами зубьев (рис, 14.5, з). При бесконечно большом ра­диусе аксоида производящего колеса инструмент должен иметь бесконечно большое число зубьев, т. е. превратиться в рейку. В этом случае инструментом   обычно   являются   червячная   фреза (рис. 14.5, б) или абразивный червячный круг (рис. 14.5, г), у ко­торых реечный производящий контур (рис. 14.5, д) расположен на винтовой поверхности. Частным случаем является инструмент, называемый зуборезной гребенкой (рис. 14.5, а) или пара тарельчатых шлифовальных кругов (рис. 14.5, в). Главным движением резания у долбяка, гребенки и абразивного хона является поступательное движение, а у червячной фрезы и Рис 14.5

lect_14_5.jpg

шлифоваль­ных кругов - вращательное движение.

В процессе движения огибания (обкатки) основной шаг инстру­мента по профильной нормали соответствует основному шагу про­ектируемого («нарезаемого») колеса. Процесс перехода от формо­образования одного зуба к другому в процессе обкатки осуще­ствляется автоматически при непрерывном относительном движении (рис. 14.5, д. з).

Если производящую поверхность рассечь плоскостью, перпен­дикулярной оси нарезаемого колеса, то в сечении получим ис­ходный производящий контур (ИПК). Станочное зацепление есть зацепление ИПК с профилем зуба нарезаемого колеса.

Рассмотрим реечное станочное зацепление, т. е. такое, когда ИПК имеет очертания зубчатой рейки. Эвольвентные кромки это­го ИПК прямолинейны. Режущий инструмент (чер­вячная фреза или гребенка), образующий своим главным движени­ем эвольвентный реечный ИПК, обладает очень ценным свойством: его можно изготовить, сравнительно дешево и точно. Геометрия зубьев нарезаемого колеса определяется параметрами ИПК реечного инструмента и его расположением по отношению к колесу.

Исходный производящий контур эвольвентного реечного инстру­мента. Форма я размеры ИПК стандартизованы. Эвольвентные части профиля зубьев ИПК (рис. 14.6, а) прямолинейны и на­клонены к оси зуба под углом . Переходы от прямолинейной части зуба к основанию впадины и к вершине осуществлены по дуге радиусом t. Точки сопряжения отмечены на ИПК буквами А, С, D, Е. Прямолинейная часть CD является эвольвентной, а скругления АС и DE - неэвольвентной частью контура. Прямая, разделяющая зуб по высоте на две равные части, называется делительной. На ИПК отмечаются еще четыре линии, параллельные делительной прямой и проходящие по основаниям впадин зубьев, по их вер­шинам и через точки сопряжения С и О. Расстояния между этими прямыми выражают размеры зуба исходного производящего кон­тура по высоте и измеряются соответственно величинами ha = ha*m и C = c*m, где ha* - коэффициент высоты зуба, с* - коэффициент радиального зазора. Согласно стандарту: ha* = 1,0 ; с* = 0,25. Прямые, проходящие через точки С и D, называются пря­мыми граничных точек.


Рис. 14.6

lect_14_6.jpg

Размерами вдоль делительной прямой являются шаг, толщина зуба н ширина впадины. Шаг р исходного производящего контура, измеренный по любой прямой, параллельной делительной, есть ве­личина постоянная, равная m, где m - стандартный модуль. Тол­щина зуба ИПК по делительной прямом равна ширине впадины s0 = e0 = m/2, а вместе они составляют шаг. Угол профиля зуба стандартизован:  = 20°. Радиус скругления (дуги DE)

                                                                                     (14.7)

Таким образом. ИПК реечного инструмента характеризуется четырьмя стандартными параметрами: m, , ha*, c*.

Реечное станочное зацепление и коэффициент смещения. Рееч­ное станочное зацепление, как и всякое зацепление, имеет началь­ные линии. Ими являются станочно-начальная прямая рейки и станочно-начальная окружность колеса, которые катятся друг по другу без скольжения. Можно показать, что в реечном станочном зацеплении радиус rw0 станочно-начальной окружности равен радиусу делительной окружности r.

Угол реечного станочного зацепления w0 равен профильному углу а исходного производящего контура (как углы с взаимно перпендикулярными сторонами). Отметим также, что угол профиля зуба колеса в точке, находящейся на делительной окружности, равен профильному углу  исходного производящего контура.

На станке инструмент можно расположить по-разному относи­тельно нарезаемого колеса. Поэтому в станочном зацеплении де­лительная прямая ИПК может располагаться различным образом по отношению к делительной окружности колеса: I) она может касаться делительной окружности - нулевая установка инструмен­та; 2) быть отодвинутой от нее — положительная установка; 3) пе­ресекать ее—отрицательная установка.

Расстояние между делительной прямой и делительной окруж­ностью называется смещением инструмента. Его выражают в виде произведения модуля m на коэффициент смещения х и ему присваивают знак. При нулевой установке смещение mх > 0, х > 0. При положительной установке mх > 0, х> 0. При отрицательной установке смещением является стрелка сегмента, которую делитель­ная прямая отсекает от делительной окружности; в этом случае mx < 0, x < 0.

На рис. 14.6, а изображено реечное станочное зацепление при нарезании зубчатого колеса с положительным смещением и указаны все элементы производящего исходного контура, нарезаемого коле­са и станочного зацепления.

Линия реечного станочного зацепления начинается в точке N и через полюс P0 уходит в бесконечность. Длина ее активной части ограничена точками В1 и B’’, находящимися на пересечении линии станочного зацепления с прямой QQ граничных точек и окруж­ностью вершин (рис. 14.6, а)

         Профиль зуба колеса имеет эвольвентную и неэвольвентную части. Переход эвольвснтного профиля в неэпольвентиый находится на окружности граничных точек колеса, радиус которой rl = OB1'.

Расстояние между окружностью вершин зубьев колеса и прямой впадин ИПК представляет собой станочный зазор С0. Величина его складывается из двух частей: с*m, ym, где у — коэффи­циент уравнительного смещения.

Размеры изготовляемого зубчатого колеса с внешними зубьями. Диаметр вершин прямозубого колеса (рис. 14.6, а):

                                                                     (14.8)

     Высота зуба из того же рисунка:

                                                                                  (14.9)

Если x = 0 (смещения инструмента нет) и у = 0, то da = m(z + 2ha*),        h = m(2ha* + с*), и при стандартных значениях ha* = 1,0 и с* = 0,25 получим      da = m(z+2) и h = 2,25m.

Стачочно-начальная прямая перекатывается по станочно-начальной окружности (она же делительная) без скольжения. По­этому толщина зуба s по делительной окружности нарезаемого колеса равна ширине ММ впадины по станочно-начальной прямой ИПК (рис. 14.6, б).

Отрезок ММ складывается из ширины впадины ИПК по де­лительной прямой e0 = m/2 и двух катетов, каждый из которых равен xm tg, поэтому:                                   

                                           s = m/2 + 2 xm tg                                        (14.10)

Если инструмент установлен относительно колеса без смещения (xm = 0), то s = m/2; значит, толщина зуба s по делительной ок­ружности колеса равна ширине впадины е, так как s + е =m. В этом случае получается колесо с равноделенным шагом s = e, Если xm > 0, то s > m/2 и, следовательно, s > e. Если xm  < 0, то s < m/2, и поэтому s < e.

При нарезании косозубых колес применяется тот же инструмент 1, что для прямозубых, но устанавливается он наклонно под углом  по отношению к торцовой плоскости t - t колеса (заготовки) (рис. 14.6, в). На этом рисунке показана развертка 2 делительного цилиндра косозубого колеса, в результате чего винтовые линии косого зуба преобразо­вались в прямые линии. В торцовой плоскости t - t косозубого колеса вследствие наклона инструмента шаг увеличивается и становится равным p/cos, а следова­тельно, и модуль в торцовой плоскости будет нестандарт­ным, равным m/cos. По­этому при расчете линейных размеров косозубого колеса по формулам, в которые входит стандартный модуль, вместо m следует подставлять m/cos, например делительный диаметр косозубого колеса d = zm/ cos.

lect_14_7.jpg

Обратим внимание на размеры ha*m, c*m, xm, y*m, перпенди­кулярные делительной прямой (рис. 14.6, а), которые принято назы­вать размерами по высоте. На рис. 14.6 в эти размеры расположены перпендикулярно плоскости рисунка. Поэтому при повороте инстру­мента на угол  размеры по высоте не изменяются. А отсюда следует, что когда в уравнениях встречаются произведения ham, cm, xm, ym, то их при расчете косозубой передачи можно под­ставлять в эти уравнения без всякого пересчета сомножителей. Так, например, формула диаметра вершин косозубого колеса может быть записана следующим образом: da = d + 2(ha*m + xm - y*m).

Угол профиля исходного производящего контура при нарезании косозубого колеса увеличивается по сравнению со стандартной величиной  = 20°, поскольку размеры по высоте не изменяются, а шаг в торцовом сечении увеличивается. Расчетный угол профиля t исходного производящего контура при нарезании косозубых ко­лес определяют по формуле:

На рис. 14.7 сравниваются профили зубьев трех колес, имею­щих одинаковые числа зубьев, нарезанные одним и тем же ин­струментом, но с различными смещениями: x1 < x2 < x3. Колеса имеют одинаковые радиусы делительных и основных окружностей; следовательно, профили зубьев всех трех колес очерчены по одной и той же эвольвенте. Но толщины зубьев s1, (дуга ab), s2 (дуга ас), s3 (дуга af) и радиусы окружностей вершин ra1, ra2, ra3, у колес будут разные. По мере увеличения х толщина зуба у основания увеличивается, а у вершины уменьшается, т. е. коэффициент сме­щения существенно влияет на форму зуба. Следовательно, назначая при проектировании тот или иной коэффициент смещения, можно влиять на форму зубьев колёс и на качество зубчатой передачи, наделяя её желательными свойствами.


Контрольные вопросы к лекции N14

1. Что называют зубчатым колесом?

Информация в лекции "Воля как волевое действие" поможет Вам.

2. Расскажите об основных элементах зубчатого колеса.

3. Запишите формулы окружного и углового шагов эвольвентного зубчатого колеса.

4. Какие методы изготовления зубчатых колёс Вы знаете?

5. В чём заключается сущность изготовления эвольвентных колёс методом огибания?

6. Дайте определение станочного зацепления.

7. Выведите формулы для определения основных размеров зубчатого колеса () используя схему станочного зацепления.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее