Популярные услуги

Главная » Лекции » Добыча ресурсов » Основы геологии и разработки нефтяных и газовых месторождений » Геологическое обоснование методов и систем разработки нефтяных и газовых залежей

Геологическое обоснование методов и систем разработки нефтяных и газовых залежей

2021-03-09СтудИзба

2. Геологическое обоснование методов и систем разработки нефтяных и газовых залежей

2.1.СИСТЕМЫ РАЗРАБОТКИ; ГЕОЛОГИЧЕСКИЕ ДАННЫЕ ДЛЯ ИХ ПРОЕКТИРОВАНИЯ

В нашей стране каждое месторождение вводится в разработку в соответствии с проектным документом, составленным специализированной научно-исследовательской организацией и предусматривающим ту систему разработки, которая наиболее рациональна для данного месторождения его геолого-физическими особенностями.

Под системой разработки месторождения понимают совокупность технологических и технических мероприятий, обеспечивающих извлечение нефти, газа, конденсата и попутных компонентов из пластов и управление этим процессом.

В зависимости от количества, мощности, типов и фильтрационной характеристики коллекторов, глубины залегания каждого из продуктивных пластов, степени их гидродинамической сообщаемости и т. д. система разработки месторождения может предусматривать выделение в его геологическом разрезе одного, двух и более объектов разработки (эксплуатационных объектов).

При выделении на месторождении двух или более объектов для каждого из них обосновывается своя рациональная система разработки. Будучи увязанными между собой, системы разработки отдельных эксплуатационных объектов составляют рациональную систему разработки месторождения в целом.

Рациональной называют систему разработки, которая обеспечивает потребности страны в нефти (газе) и возможно более полное извлечение из пластов нефти, газа, конденсата и полезных попутных компонентов при наименьших затратах. Рациональная система разработки должна предусматривать соблюдение правил охраны недр и окружающей среды, полный учет всех природных, производственных и экономических особенностей района, рациональное использование природной энергии залежей, применение при необходимости методов искусственного воздействия на пласт.

Системы разработки с заводнением обеспечивают наибольший эффект при разработке залежей маловязкой нефти, приуроченных к продуктивным пластам с умеренной неоднородностью и повышенной проницаемостью.

При разработке залежей с ухудшенной геологопромысловой характеристикой (повышенная вязкость пластовой нефти, пониженная проницаемость пород-коллекторов) с помощью заводнения также достигается повышение коэффициента извлечения нефти почти в 2 раза по сравнению с его величиной при разработке на природном режиме, но абсолютные значения этого коэффициента не во всех случаях достаточно высоки. В связи с широким диапазоном показателей геолого-физической характеристики залежей значения конечного коэффициента извлечения нефти при заводненни находятся в широких пределах—в основном от 0.3 до 0,6. В среднем по стране при заводнении пластов в недрах остается около половины содержащихся в них запасов нефти.

В основе выбора системы разработки месторождений УВ лежит геологопромысловое обоснование технологических решений:

Рекомендуемые материалы

1) о выделении эксплуатационных объектов на многопластовом месторождении;

2) о необходимости применения метода искусственного воздействия на залежь или целесообразности разработки объекта с использованием природной энергии;

3) при необходимости — о методе воздействия и его оптимальной разновидности; о соответствующем взаимном размещении нагнетательных и добывающих скважин на площади:

4) о плотности сетки скважин;

5) о градиенте давления в эксплуатационном объекте;

6) о комплексе мероприятий по контролю и регулированию процесса разработки.

По каждому из названных пунктов должны приниматься решения, наиболее полно отвечающие геологической характеристике эксплуатационного объекта. При этом по одним пунктам рекомендации могут быть даны однозначно уже по данным промыслово-геологических исследований, по другим — могут быть предложены две-три близкие рекомендации. На этой основе специалистами в области технологии разработки месторождений выполняются гидродинамические расчеты нескольких вариантов системы разработки. Варианты различаются сочетанием рекомендаций по пунктам, обоснованных по геологическим данным. Из них выбирают оптимальный вариант, соответствующий требованиям, предъявляемым к рациональноной системе разработки. Выбор оптимального варианта выполняют на основе сравнения динамики годовых технологических и экономических показателей разработки рассмотренных вариантов.

Исследования по обобщению опыта разработки нефтяных месторождении при вытеснении нефти водой, выполненные в разные годы и в разных масштабах, свидетельствуют о том, что основное влияние на динамику технико-экономических показателей разработки оказывает геологопромысловая характеристика объектов. Вместе с тем применение системы разработки, соответствующей геолого-физическим условиям, дает возможность в значительной мере снивелировать неблагоприятные геологопромысловые особенностн эксплуатационных объектов.

Обоснование выделения эксплуатационных объектов и оптимальных вариантов систем разработки каждого из них базируется на сформированной к началу проектных работ геологической модели каждой из залежей и месторождения в целом.

Геологическая модель представляет собой комплекс промыслово-геологических графических карт и схем, цифровых данных, кривых, характеризующих зависимости между различными параметрами залежей, а также словесное описание особенностей залежей.

Среди графических карт и схем обязательны: сводный литолого-стратиграфический разрез месторождения; схемы детальной корреляции; структурные карты, отражающие тектоническое строение эксплуатационного объекта; карты поверхностей коллекторов объекта с нанесением начальных контуров нефтегазоносности; геологические профили по эксплуатационному объекту с отражением условий залегания нефти и газа; карты распространения коллекторов (для каждого пласта в отдельности); карты полной, эффективной, эффективной нефтенасыщенной и газонасыщенной мощности в целом по объекту и по отдельным пластам. При специфических особенностях залежи приводятся необходимые дополнительные карты и схемы (схема обоснования положения ВНК и ГВК, карты распространения коллекторов разных типов, карта температуры, карта коэффициента светопоглощения, карта проницаемости и др.).

Цифровыми данными характеризуются пористость, проницаемость, начальная нефте(газо) насыщенность пород-коллекторов; полная, эффективная, эффективная нефте(газо) насыщенная мощность; мощность проницаемых разделов между пластами; физико-химические свойства пластовых нефти, газа. конденсата, воды. При этом для каждого параметра указываются: число определений разными методами и число исследованных скважин; интервалы значений; оценка неоднородности на всех иерархических уровнях; среднее значение по объекты в целом и по его частям, изучаемым на мезо-, макро- и мета - уровнях.

К группе цифровых данных относятся также: статистические ряды распределения проницаемости; мета- и макронеоднородность пластов (соотношение объемов коллекторов разных типов, коэффициенты песчанистости, расчлененности, прерывистости, слияния и др.): термобарические условия; результаты проведенных в лабораторных условиях физико-гидродинамических исследований вытеснения нефти (газа) агентами, использование которых предполагается при разработке объекта.

К важнейшим цифровым данным, характеризующим геологическую модель месторождения, относятся: балансовые и извлекаемые запасы нефти, газа, конденсата, ценных попутных компонентов; размеры площади нефтеносности; ширина, длина и высота залежи; размеры частей залежи, изучаемых на метауровне,—чисто нефтяной, водонефтяной нефтегазовой, нефте газоводяной, газоводяной зон.

В числе кривых, характеризующих зависимости между параметрами. приводят кривые зависимости физических свойств нефти и газа от давления и температуры, характеристику фазовых проницаемостей. зависимости коэффициента вытеснения от проницаемости.

В текстовой части геологической модели залежи описывается ее природный режим и на основе всех названных выше материалов излагаются основные геолого-физические особенности залежи, определяющие выбор технологических решений и системы разработки в целом, а также влияющие на ожидаемые показатели разработки.

2.2.СИСТЕМЫ РАЗРАБОТКИ НЕФТЯНЫХ И ГАЗОНЕФТЯНЫХ ЗАЛЕЖЕЙ ПРИ ЕСТЕСТВЕННЫХ РЕЖИМАХ И ГЕОЛОГИЧЕСКИЕ УСЛОВИЯ ИХ ПРИМЕНЕНИЯ

В настоящее время при использовании природных видов энергии разрабатывают залежи нефти с «эффективным» природными режимами, для которых искусственное воздействие не требуется, а также залежи с особыми геологическими условиями, при которых методы воздействия не могут принести необходимых результатов или не могут быть освоены.

К числу нефтяных залежей с эффективными природными режимами относят залежи с водонапорным и активным упруговодонапорным режимами. Последний называют активным в случае, когда ресурсы его энергии достаточны для отбора из недр извлекаемых запасов нефти достаточно высокими темпами без снижения пластового давления ниже давления насыщения.

Наиболее распространенный метод воздействия—заводнение—не приносит нужных результатов при вязкости нефти в пластовых условиях более 30—40 мПа с, поскольку при этом в пласте не создается устойчивого фронта вытеснения нефти водой: последняя быстро перемещается по тонким наиболее проницаемым прослоям пласта, оставляя невыработанным основной объем залежи. Заводнение не может быть освоено при низкой проницаемости пластов.

Система разработки нефтяной залежи с использованием напора краевых вод.

Систему применяют для нефтяных залежей пластового типа с природным водонапорным или активным упруговодонапорным режимом.

Она предусматривает разбуривание залежи добывающими скважинами с расположением их в основном в чисто нефтяной части залежи замкнутыми («кольцевыми») рядами, параллельными внутреннему контуру нефтеносности. По возможности соблюдается шахматный порядок расположения скважин (рис.   ).

Для продления безводного периода эксплуатации скважин расстояния между рядами скважин могут устанавливаться несколько большими, чем между скважинами в рядах. С этой же целью в скважинах внешнего ряда нижнюю часть нефтенасыщенной мощности пласта обычно не перфорируют.

В скважинах внутренних рядов нефтенасыщенный пласт перфорируют по всей мощности. Рассмотренные размещения скважин и их перфорация наилучшим образом отвечают процессу внедрения в залежь краевых вод, восполняющих отбор жидкости из нее. Из водонефтяной зоны нефть вытесняется водой к скважинам. В процессе разработки происходит «стягивание» контуров нефтеносности, размеры залежи уменьшаются. Соответственно постепенно обводняются и выводятся из эксплуатации скважины внешнего кольцевого ряда, затем, через определенные этапы,— скважины последующих рядов.

Система разработки с использованием напора подошвенных вод.

Систему применяют для нефтяных залежей массивного типа (обычно на всей или почти на всей площади залежи подстилаются водой), которые обладают водонапорным пли активным упруговодонапорным режимом. При разработке таких залежей вытеснение нефти водой сопровождается повсеместным подъемом ВНК, т. е. последовательно обводняются интервалы залежи, расположенные примерно на одних гипсометрических отметках; размеры залежи уменьшаются. Размещение скважин на площади залежи и подход к перфорации продуктивной части разреза зависят от высоты и других параметров залежи. При высоте залежи, измеряемой десятками метров, скважины располагают равномерно и пласт в них перфорируют от кровли до некоторой условно принятой границы, отстоящей от ВНК на несколько метров (рис. 14). При высоте залежи, составляющей 200—300 м н более (что свойственно некоторым массивным залежам в карбонатных коллекторах), предпочтительнее располагать скважины по сетке, сгущающейся к центру залежи, выдерживая принцип равенства запасов нефти, приходящихся на одну скважину. При этом подход к вскрытию продуктивной части разреза в скважинах зависит от фильтрационной характеристики залежи. При низкой вязкости нефти—до 1—2 мПа с, высокой проницаемости и относительно однородном строении продуктивной толщи возможно вскрытие в скважинах верхней части нефтенасыщенной мощности, поскольку в таких условиях нефть из нижней части может быть вытеснена к вскрытым интервалам. При низкой вязкости нефти и неоднородном строении пород-коллекторов или при повышенной вязкости нефти может быть реализовано последовательное вскрытие нефтенасыщенной мощности.

Система разработки с использованием энергии выделяющегося из нефти газа.

 Система применяется при режиме растворенного газа и предусматривает разбуривание эксплуатационного объекта обычно по равномерной сетке с перфорацией во всех скважинах всей нефтенасыщенной мощности.

Система разработки с совместным использованием напора пластовых вод и газа газовой шапки.

Система разработки нефтяной части газонефтяной залежи предусматривает использование смешанного режима залежи и вытеснение нефти контурной водой и газом газовой шапки. При этой системе скважины располагают по равномерной сетке и перфорируют в них лишь часть нефтенасыщенной мощности со значительным отступлением от контактов.

Поскольку вода обладает лучшей отмывающей способностью по сравнению с газом, систему предпочтительнее применять для залежей с относительно небольшими газовыми шапками.

При значительном объеме нефтяной части залежи по сравнению с газовой шапкой более эффективное действие напора вод и уменьшение влияния газовой шапки проявляются при больших углах падения пластов н значительной высоте нефтяной части залежи, высоком пластовом давлении, повышенных значениях проницаемости и гидропроводности пород-коллекторов. В рассматриваемых условиях разработка залежи в значительной мере усложняется вследствие образования конусов газа и воды. Это необходимо учитывать при обосновании интервалов перфорации и дебитов скважин.

Система с использованием напора пластовых вод при неподвижном ГНК.

Система предусматривает обеспечение отбора нефти из нефтегазовой залежи (с потенциально смешанным природным режимом) только за счет внедрения пластовых вод при неизменном объеме газовой шапки. Стабилизация ГНК в начальном его положении обеспечивается регулированием давления в газовой шапке путем отбора из нее через специальные скважины строго обоснованных объемов газа, соответствующих темпам снижения давления в нефтяной части залежи. При такой системе разработки интервал перфорации в скважинах может быть расположен несколько ближе к ГНК по сравнению с его положением при совместном использовании напора вод и газа. Однако и здесь при выборе интервала перфорации следует учитывать возможность образования конусов газа и воды и необходимость продления периода безводной эксплуатации скважин в условиях подъема ВНК.

Система разработки с нейтрализацией действия энергии газовой шапки успешно применяется при большой высоте нефтяной части залежи, низкой вязкости нефти, высокой проницаемости пласта, наличии в разрезе пласта непроницаемых прослоев, увеличивающих его анизотропию.

2.3.НЕТРАДИЦИОННЫЕ МЕТОДЫ РАЗРАБОТКИ НЕФТЯНЫХ ЗАЛЕЖЕЙ И ГЕОЛОГИЧЕСКИЕ УСЛОВИЯ ИХ ПРИМЕНЕНИЯ

Нетрадиционными методами разработки в настоящее время принято называть все методы воздействия на пласт, отличающиеся от широко применяемого метода заводнения. Новые методы необходимы для разработки залежей нефти, на которых заводнение не может быть применено вообще, и для эксплуатационных объектов, на которых традиционное заводнение не обеспечивает высоких коэффициентов извлечения нефти. Таким образом, применение новых методов предусматривает увеличение коэффициентов извлечения нефти по сравнению с их величиной при использовании природного режима залежей и заводнения. Поэтому часто все нетрадиционные методы разработки называют методами увеличения коэффициентов извлечения нефти.

Методы повышения коэффициентов извлечения нефти по виду применяемого процесса можно подразделять на следующие группы:

физико-химические методы—вытеснение нефти водными растворами химических реагентов (полимеров, поверхностно-активных веществ, кислот, щелочей), мицеллярными растворами и др.;

теплофизические методы—нагнетание в пласты теплоносителей—горячей воды или пара;

термохимические методы—применение процессов внутрипластового горения нефти — «сухого», влажного или сверхвлажного, в том числе с участием щелочей, оксидата и др.:

методы вытеснения нефти смешивающимися с ней агентами—растворителями, углеводородными газами под высоким давлением.

Каждый из  методов может быть эффективно применен лишь в определенных геолого-физических условиях. Поэтому при внедрении того или иного нового метода важно выбрать соответствующие эксплуатационные объекты. Испытание методов в промысловых условиях показывает, что оценка эффективности новых методов по данным лабораторных и теоретических исследований нередко бывает завышенной. Поэтому при выборе объектов наряду с экспериментальными данными необходимо учитывать результаты широкого испытания методов в различных геологопромысловых условиях. В настоящее время объем таких испытаний еще недостаточен. Поэтому приводимые ниже рекомендации по применению различных методов следует принимать в качестве предварительных. Эффективность рекомендуемых методов и реагентов также требует дополнительной проверки.

При обосновании применения новых методов следует учитывать, что многие из них дорогостоящие, требуют использования дефицитных реагентов или сложного оборудования. Поэтому при их проектировании и внедрении особое внимание следует уделять вопросам экономики.

Заводнение с использованием химических реагентов.

Эта группа методов основана на нагнетании в продуктивные пласты водных растворов химических веществ с концентрацией 0,02—0,2%. Растворы нагнетаются в объеме 10—30% от общего объема пустот залежи для создания оторочки, вытесняющей нефть. Затем оторочку перемещают путем нагнетания в пласт обычной воды, называемой в этом случае рабочим агентом. Методы могут применяться при тех же плотностях сеток скважин, что и обычное заводнение. С их помощью может быть существенно расширен диапазон значений вязкости пластовой нефти (вплоть до 50—60 мПа с), при котором возможно применение методов воздействия, основанных на заводнении. Применение методов в начальных стадиях разработки позволяет ожидать увеличение коэффициентов извлечения нефти по сравнению с их величиной при обычном заводнении на 3—10%.

Вытеснение нефти водными растворами полимеров.

Наиболее приемлемым для этого процесса считается раствор полиакриламида (ПАА) известкового способа нейтрализации. Добавка ПАА к нагнетаемой воде повышает ее вязкость и, следовательно, уменьшает относительную вязкость пластовой нефти: mо=mн/mв. Это повышает устойчивость раздела между водой и нефтью (фронта вытеснения), способствуя улучшению вытесняющих свойств воды и более полному вовлечению объема залежи в разработку.

Метод рекомендуется для залежей с повышенной вязкостью пластовой нефти — 10—50 мПа с. Учитывая возможность снижения приемистости нагнетательных скважин вследствие повышенной вязкости раствора и соответственно низких темпов разработки залежей, метод целесообразно применять при значительной проницаемости пород-коллекторов—более 0,1 мкм2. Благоприятны залежи с относительно однородным строением продуктивных пластов, преимущественно порового типа.

При фильтрации раствора в пористой среде пород происходит адсорбция полимера на стенках пустот. Интенсивность этого процесса особенно ощутима при движении в пласте первой порции раствора, при значительной обводненности пластов минерализованной водой в результате предшествующей разработки, при высокой глинистости пород-коллекторов. Так как адсорбция может воздействовать на эффективность процесса вытеснения одновременно в двух противоположных направлениях, то по каждому объекту она должна быть предметом специальных исследований. Вместе с тем считают, что наиболее эффективно метод может быть применен на новых залежах (с низкой водонасыщенностью пластов) при низкой глинистости коллекторов (не более 8—10%). Вследствие потери полимерами при высокой температуре способности загущать воду метод целесообразно применять при температуре пластов не выше 70—90°С. Допустимая глубина залегания продуктивных отложений определяется потерями давления на трение вязкой жидкости в нагнетательных скважинах и величиной геотермического градиента.

Вытеснение нефти водными растворами поверхностно-активных веществ ПАВ.

Наиболее применимыми считаются растворы неионогенных ПАВ типа ОП-10. Судя по эксплуатационным данным, добавка ПАВ в нагнетаемую воду улучшает отмывающие свойства воды: снижается поверхностное натяжение воды на границе с нефтью, уменьшается краевой угол смачивания и т. д. Метод рекомендуется для залежей с водонасыщенностью пласта не более 15% (с учетом способности реагента к селективной адсорбции на стенках во-донасыщенных пустот породы), при вязкости пластовой нефти 5—30 мПа-с, проницаемости пласта выше 0,03—0,04 мкм2, температуре пласта до 70 °С.

Следует отметить, что по мере накопления материалов о проведении опытно-промышленных работ в разных геологопромысловых условиях представления об эффективности метода становятся менее оптимистичными. В настоящее время возможный прирост коэффициента извлечения нефти от применения метода оценивают примерно в 3-5%.

Вытеснение нефти мицеллярными растворами.

При этом методе в качестве вытесняющего агента, в пласт нагнетают мицеллярный раствор (в объеме около 10 %)

В разных литературных источниках указываются различные предельные значения температуры от пустотного пространства залежи), узкую оторочку которого перемещают широкой оторочкой буферной жидкости — раствора полимера, а последнюю—рабочим агентом—водой. Состав мицеллярного раствора: легкая углеводородная жидкость, пресная вода, поверхностно-активные вещества, стабилизатор. Раствор представляет собой микроэмульсню, состоящую из агрегатов (мицелл) молекул воды и УВ. Метод предусматривает достижение близких значений вязкости пластовой нефти, мицеллярного раствора и буферной жидкости. Механизм процесса находится в стадии изучения.

Метод предназначается в основном для извлечения остаточной нефти из заводненных пластов. Для применения известных мицеллярных растворов рекомендуется выбирать залежи нефти  в терригенных коллекторах порового типа (нетрещиноватых). относительно однородных, не содержащих карбонатного цемента. Эти требования обусловлены тем, что при перемещении раствора по резко неоднородному коллектору и при контакте его с карбонатами может нарушаться его структура. Средняя проницаемость пластов желательна более 0,1 мкм2. Остаточная нефтенасыщенность пласта технологически не ограничивает применения метода, но вследствие большой стоимости работ по созданию оторочки экономически целесообразно, чтобы она была более 25—30%. Рекомендуемая вязкость пластовой нефти от 3 до 20 мПа×с, поскольку при более высокой вязкости требуется и большая вязкость раствора и буферной жидкости, что обусловливает технологические трудности в подготовке и нагнетании растворов. В связи с неблагоприятным влиянием солей на структуру раствора метод целесообразно применять для эксплуатационных объектов, разрабатываемых с внутриконтурным нагнетанием пресной воды. Температура пластов не должна превышать 70—90 °С. Допустимая глубина залегания пластов определяется теми же факторами, что и при вытеснении нефти растворами ПАВ.

Теплофизические методы.

Применение этих методов основано на внесении в пласт тепла с поверхности. В качестве теплоносителей применяют пар или горячую воду.

Вытеснение нефти паром. Метод рекомендуется для разработки  залежей  высоковязких  нефтей — более  40— 50 мПа•с, для которых метод заводнения не пригоден. Наибольшее признание процесс паротеплового воздействия получил в сочетании с заводнением, при котором путем нагнетания пара в пласт в нем создается высокотемпературная оторочка в объеме 20—30 % к общему объему пустотного пространства залежи, которая перемещается закачиваемой в пласт водой. Применение метода позволяет достигать высокой величины коэффициента извлечения нефти—0,4—0,6, иногда более.

Высокая эффективность метода обеспечивается благодаря снижению вязкости пластовой нефти, дистилляции нефти в зоне пара, гидрофилизации породы-коллектора вследствие расплавления и удаления со стенок пор смол и асфальтенов и другим явлениям.

Выбор залежей с благоприятной для применения метода геологопромысловой характеристикой основывается главным образом на необходимости создания условий для минимальных потерь тепла при перемещении пара по скважине и затем по пласту. Глубина залегания пласта ограничивается примерно 1000 м во избежание чрезмерно высоких потерь тепла в породы через ствол нагнетательной скважины. Рекомендуемая нефтенасыщенная мощность—10—40 м. При меньшей мощности резко возрастают потери тепла в породы, покрывающие и подстилающие продуктивный пласт. При чрезмерно большой мощности горизонта во избежание низкого охвата воздействием по вертикали возможно его расчленение на объекты. Благоприятны высокие коллекторские свойства пород (коэффициент пористости более 0,2 %, проницаемость более 0,5 мкм2), поскольку при этом сокращаются потерн тепла на нагревание собственно пород продуктивного пласта. Процесс наиболее эффективен при разработке залежей с высокой начальной нефтенасыщенностью, так как при этом потери тепла на нагрев содержащейся в пласте воды минимальны.

Следует учитывать, что нагнетание пара при неустойчивости пород-коллекторов к разрушению может вызвать усиление выноса породы в добывающие скважины, а также разбухание глин в пласте, приводящее к уменьшению размера пор и к соответствующему снижению проницаемости. Поэтому целесообразно выбирать объекты с пластами, не подверженными разрушению и с малой глинистостью—не более 10%. Более благоприятны для процесса мономинеральные (кварцевые) песчаники, менее благоприятны — полимиктовые с обломками глинистых пород.

Применение метода эффективно при условии расстояний между скважинами не более 200—300 м.

Вытеснение нефти горячей водой. Этот метод может применяться для разработки нефтяных залежей высоковязких нефтей с целью повышения коэффициента извлечения нефти из залежей высокопарафинистых нефтей для предотвращения выпадения парафина в пласте. Повышение коэффициента извлечения нефти обусловливается теми же факторами. что и при нагнетании пара. Однако рассматриваемый процесс менее эффективен, поскольку он обеспечивает воздействие на пласт меньшей, чем при нагнетании пара. температуры и для прогрева пласта, вследствие значительного отставания фронта прогрева пласта от фронта вытеснения нефти, требуется закачивать в пласт большие объемы горячей воды (в 3—4 раза превышающие объем пустот продуктивного пласта).

Метод применяется для залежей, по которым даже незначительное снижение температуры в процессе разработки может приводить к выпадению парафина в пласте и закупориванию его пор. Для предотвращения этого следует нагнетать воду с температурой, превышающей пластовую на величину ее потерь по пути к забою скважины.

Так же, как и при нагнетании пара, выбор объектов для воздействия горячей водой в основном лимитируется величиной теплопотерь в скважине и в пласте.

Термохимические методы.

Методы основаны на способности пластовой нефти вступать в реакции с нагнетаемым в пласт кислородом (воздухом), сопровождающиеся выделением большого количества тепла (внутрипластовым «горением»). Таким образом, методы предусматривают генерирование тепла непосредственно в продуктивном пласте путем инициирования процесса горения у забоя и перемещения зоны (фронта) горения по пласту при последующем нагнетании воздуха. Для разработки нефтяных залежей могут быть применены следующие методы:

- прямоточное «сухое» горение, когда на забое воздухонагнетательной скважины производится поджог нефти и зона горения перемещается нагнетаемым воздухом в направлении к добывающим скважинам;

- прямоточное влажное или сверхвлажное горение, при котором в пласт нагнетаются в определенном соотношении воздух и вода. Это обеспечивает образование впереди фронта горения оторочки горячей воды, т. е. перенос тепла в зону впереди фронта горения, и способствует увеличению коэффициента извлечения нефти при значительном уменьшении расхода нагнетаемого воздуха.

Второй процесс более эффективен, так как реализуются те же факторы улучшения механизма вытеснения нефти, что и при нагнетании в пласт пара, и, кроме того, дополнительные факторы, свойственные этому процессу (вытеснение нефти водогазовыми смесями, образующимся углекислым газом, поверхностно-активными веществами и др.). Учитывая рост давления нагнетания воздуха с увеличением глубины залегания пластов и необходимость применения компрессоров высокого давления, следует выбирать залежи, расположенные на глубинах не более 1500—2000 м. Методы могут быть рекомендованы для залежей с вязкостью пластовой нефти от 10 до 1000мПа с и более. Такие нефти содержат достаточное количество тяжелых фракций нефти, служащих в процессе горения топливом (коксом). Исходя из технологической возможности и экономической целесообразности процесса, рекомендуется применять его при проницаемости пород более 0,1 мкм2 и нефтенасыщенности более 30—35%. Мощность пласта должна быть более 3—4 м. Рекомендации по верхнему пределу мощности в литературе неоднозначны. Среди других имеются указания на то, что при лучшей проницаемости средней части эксплуатационного объекта нефтенасыщенная мощность может достигать70—80 м и более. При этом процесс горения, протекающий в средней части объекта, может обеспечивать прогрев и его менее проницаемых верхней я нижней частей.

Процесс сухого горения в связи с высокой температурой горения—700 °С и выше—более применим для терригенных коллекторов, поскольку карбонатные коллекторы при высокой температуре подвержены разрушению. При влажном и особенно сверхвлажном процессах горение протекает при меньшей температуре—соответственно 400—500 и 200—300 °С. поэтому они применимы как для терригенных, так и для карбонатных коллекторов.

Процесс сухого горения эффективен при таких же плотных сетках скважин, что и теплофизические методы. При реализации влажного горения в связи со значительными размерами зоны прогрева впереди фронта горения возможно применение сеток скважин плотностью до 16—20 га/скв.

Методы смешивающегося вытеснения.

К этой группе новых методов относят вытеснение нефти смешивающимися с нею агентами—двуокисью углерода СО2, сжиженными нефтяными газами (преимущественно пропаном), обогащенным газом (метаном со значительным количеством С2—С6), сухим газом высокого давления (в основном метаном). Каждый из методов эффективен при определенных компонентных составах и фазовых состояниях нефти и давлении, при котором может происходить процесс смешивания. С учетом последнего вытеснение нефти сухим газом высокого давления наиболее эффективно для залежей с пластовым давлением более 20 МПа, вытеснение обогащенным газом—10—20 МПа, сжиженным газом и двуокисью углерода—8—14 МПа. Следовательно, эти методы целесообразно применять для залежей с большими глубинами залегания пластов—более 1000—1200 м. Благоприятны также низкая вязкость пластовой нефти—менее 5 мПа×с и относительно небольшая мощность пластов—до 10—15 м. В принципе методы могут использоваться при различной проницаемости пластов, но практически их целесообразно применять при низкой проницаемости, когда не удастся реализовать более дешевый метод — заводнение.

Температура пласта имеет ограничение лишь при вытеснении нефти сжиженным пропаном—не более 96—97 °С, так как при большей температуре он переходит в газообразное состояние. Применение других методов температурой не лимитируется.

Методы вытеснения нефти газом высокого давления и обогащенным газом рекомендуются для пластов с высокой нефтенасыщенностью—более 60—70%. Методы вытеснения сжиженными газами и углекислым газом могут быть достаточно эффективными и при меньшей ее величине (35—40%), что позволяет использовать их после значительного обводнения пластов в результате применения заводнения.

2.4.ОСОБЕННОСТИ РАЗРАБОТКИ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ ЗАЛЕЖЕЙ И ВЛИЯНИЕ НА НЕЕ ГЕОЛОГИЧЕСКИХ УСЛОВИИ

Системы и процессы разработки газовых и газоконденсатных залежей имеют ряд особенностей.

В отличие от нефтяных газовые залежи разрабатываются без воздействия на пласты с использованием природной энергии. В связи с этим отбор газа из залежей на протяжении всего периода разработки обычно сопровождается снижением среднего пластового давления — более значительными темпами при газовом режиме и менее значительными при упруговодонапорном.

Снижение пластового давления в разрабатываемых газовых залежах в процессе их разработки приводит к важным последствиям.

При взаимодействии залежей с законтурной областью снижение пластового давления в залежах, особенно в крупных, оказывает влияние на состояние пластового давления во всей водонапорной системе, к которой они приурочены. В результате расположенные вблизи разрабатываемых новые залежи к началу их освоения могут иметь пластовое давление, пониженное по сравнению с начальным давлением в водонапорной системе. В одновозрастных отложениях может также наблюдаться взаимодействие разрабатываемых залежей, выражающееся в заметном несоответствии скорости снижения пластового давления темпам отбора газа.

Одно из важных последствий падения пластового давления—постепенное снижение дебита скважин в процессе разработки. В отличие от нефтяных скважин снижение дебита газовых скважин при падении давления происходит даже при сохранении постоянной депрессии на забое скважины. Это обусловлено нарушением линейного закона фильтрации вследствие весьма высоких скоростей движения газа в прискважинной зоне.

При снижении пластового и забойного давлений возрастает величина превышения над ними геостатического давления, что может приводить к заметной деформации пород-коллекторов, особенно в призабойных зонах скважин. В результате ухудшаются коллекторские свойства пород и происходит некоторое снижение дебита скважин.

При сниженном пластовом давлении во избежание поглощений промывочной жидкости и других осложнений часто бывает необходимо изменить технологию вскрытия продуктивных пластов в бурящихся скважинах.

Одна из важных особенностей газовых залежей обусловлена тем, что вследствие высокой подвижности газа даже при больших размерах залежей каждая из них представляет собою единую газодинамическую систему, все части которой в процессе разработки взаимодействуют. Это создает предпосылки для управления процессом разработки путем изменения отборов газа из различных частей залежи с целью перераспределения пластового давления в ее пределах и возможно большего замедления темпов его снижения в зонах наибольшего отбора.

Другая особенность разработки газовых залежей, также обусловленная высокой подвижностью пластового газа,— высокие дебиты скважин, примерно на два порядка превышающие дебиты нефтяных скважин при одинаковых коллекторских свойствах пластов. Это позволяет обеспечивать достаточно высокие темпы разработки относительно небольшим количеством скважин, т. е. при намного меньшей плотности сеток скважин, чем для нефтяных залежей.

Как отмечалось, по мере снижения пластового и забойного давлений дебит газовых скважин уменьшается. Для большей продолжительности периода сохранения достигнутого максимального уровня добычи газа по мере снижения дебита скважин бурят и вводят в эксплуатацию дополнительные скважины. В результате фонд действующих скважин постепенно возрастает. Но и при этом средняя плотность сетки скважин остается намного меньшей, чем при разработке нефтяных залежей. После отбора 60—70 % извлекаемых запасов газа бурение скважин обычно прекращают.

По-разному решается вопрос об эксплуатации обводняющихся скважин при разработке нефтяных и газовых месторождений. Нефтяные скважины после появления в них воды продолжительное время эксплуатируются в условиях нарастающей обводненности и выводятся из работы по достижении высокого содержания воды в добываемой продукции, вплоть до 95—99%. В результате из обводняющихся скважин отбираются большие объемы попутной воды. При разработке газовых залежей в условиях водонапорного режима, обусловливающего внедрение воды в залежь и появление ее в скважинах, последние выводятся из эксплуатации после относительно небольших отборов воды, с восполнением при необходимости действующего фонда скважин путем бурения дополнительных скважин. Это связано с особенностями промыслового обустройства газовых месторождений, которое по технологическим и экономическим соображениям обычно не рассчитывается на сбор и подготовку газа со значительным содержанием воды.

Свои особенности имеет разработка газоконденсатных залежей. При отборе из залежей газа с использованием природных режимов пластов забойное давление в скважинах, а затем и пластовое давление падают ниже давления начала конденсации. В результате сначала в локальных прискважинных зонах, а затем и повсеместно начинаются фазовые переходы — часть конденсата выпадает из газа в виде жидкости, оседает в пустотах породы и остается в недрах, что обусловливает его потери н снижение коэффициента извлечения конденсата. Конденсат—ценнейшее сырье для нефтехимической промышленности. Поэтому для крупных по запасам газоконденсатных залежей, характеризующихся высоким содержанием конденсата, весьма актуальна проблема применения систем разработки, обеспечивающих поддержание пластового давления выше давления начала конденсации. В настоящее время считают возможным применение для этой цели методов нагнетания в пласт сухого газа или воды.

Более приемлем первый метод, при котором в пласт нагнетается освобожденный от конденсата газ, добываемый из той же залежи, в полном его объеме или частично в зависимости от того, сколько нужно газа для поддержания пластового давления на заданном уровне. Такой технологический прием называют сайклинг-процессом. Закачку сухого газа в пласт необходимо проводить до тех пор, пока содержание конденсата в добываемом газе не снизится до минимально допустимого с экономической точки зрения. После этого нагнетание газа должно быть прекращено, нагнетательные скважины переведены в фонд добывающих и залежь должна разрабатываться как обычная газовая. Внедрение этого процесса сдерживается тем, что значительная часть сухого газа продолжительное время не будет использоваться в народном хозяйстве, а также техническими сложностями реализации процесса.

В этом отношении имеет преимущество метод заводнения, который может быть освоен в самом начале разработки залежи. Добываемый при этом сухой газ может в полном объеме использоваться в народном хозяйстве. Вместе с тем применение заводнения связано со своими издержками. Главная из них—возможное сокращение сроков эксплуатации скважин в связи с их обводнением в результате перемещения воды по наиболее проницаемым прослоям. Вывод из эксплуатации обводняющегося фонда скважин в условиях обеспечиваемого заводнением высокого пластового давления в залежи может приводить к снижению эффективности процесса разработки и оставлению в недрах существенной доли запасов газа и конденсата. Метод заводнения также еще не нашел широкого применения при разработке газоконденсатных залежей.

Важная особенность проектирования разработки газовых и газоконденсатных залежей с малым содержанием конденсата при природных режимах заключается в том, что общее проектное количество добывающих скважин определяется исходя из необходимости обеспечения возможно более продолжительного периода эксплуатации с максимальным уровнем добычи газа. Проблема достижения проектного коэффициента извлечения газа решается параллельно этим же количеством скважин. С началом падения добычи газа из залежи бурение скважин обычно прекращают. На нефтяных же залежах значительная часть проектных скважин предназначена главным образом для достижения проектного коэффициента извлечения нефти. Бурение таких скважин на участках, где выявлены целики нефти, осуществляется практически до конца разработки залежи.

Строение газовых залежей по сравнению с нефтяными в конечном счете освещается значительно меньшим количеством скважин. В связи с этим при изучении геологического строения залежей и запасов газа особенно важно использовать все возможные косвенные методы — гидродинамические, материального баланса  и др.

На выбор систем разработки газовых и газоконденсатных залежей, на динамику годовой добычи газа и на весь процесс разработки большое влияние оказывает их геолого-промысловая характеристика.

Так, характер природного режима во многом влияет на темпы падения пластового давления при разработке и, следовательно, на характер снижения дебита скважин. В свою очередь, это определяет масштабы и сроки бурения дополнительных скважин, необходимых для возможно более продолжительного сохранения максимального уровня добычи газа, технологию эксплуатации скважин и сроки обустройства месторождения. При прочих равных условиях в случае водонапорного режима пластовое давление снижается медленнее, чем в случае газового режима, с повышением активности краевой области падение давления замедляется. Вместе с тем действие водонапорного режима приводит и к неблагоприятным последствиям. При неоднородности коллекторских свойств газоносных пород по площади и разрезу, а также неравномерности дренирования залежи в разных частях ее объема происходит ускоренное продвижение воды по высокопроницаемым прослоям разреза. Это может стать причиной преждевременного обводнения скважин, расположенных в пределах текущего внешнего контура газоносности.

Следует отметить, что по сравнению с нефтяными залежами в газовых существуют условия для более неравномерного перемещения воды. Это связано с тем, что кондиционные пределы проницаемости пород для газа значительно ниже, чем для нефти и воды, и поэтому объективно повышается неоднородность пластов за счет включения в эффективный объем залежи пород, непроницаемых для нефти и воды. В результате создаются условия для весьма неравномерного внедрения воды в газовые залежи по проницаемым для нее прослоям. В рассматриваемых условиях особо важное значение приобретает регулирование отборов газа по мощности продуктивных отложений с целью максимально возможного выравнивания скорости внедрения воды. Необходимо выполнение большого объема работ в скважинах по изоляции (выключению из работы) обводненных интервалов. Вместе с тем, как показывает опыт разработки, даже при высокой организации работ по управлению процессом разработки неравномерное перемещение воды, обусловленное неоднородностью пород, приводит к увеличению потерь газа в недрах.

В связи с разной степенью неоднородности продуктивных горизонтов величина коэффициента извлечения газа при водонапорном режиме колеблется в довольно широком диапазоне. На залежах с умеренной неоднородностью коллекторских свойств может достигаться наиболее высокая величина коэффициента извлечения газа, близкая к таковой при газовом режиме. При высокой геологической неоднородности конечный коэффициент извлечения газа остается намного меньшим.

Характер природного режима залежи и строение продуктивной части отложений следует учитывать при размещении добывающих скважин по ее площади.

В условиях газового режима при умеренной неоднородности коллекторских свойств предпочтительнее равномерное размещение скважин на всей площади залежи. При неоднородном строении пластов, выражающемся в наличии в пределах залежи зон с высокой продуктивностью, целесообразно размещение скважин именно в этих зонах, т. е. неравномерное по площади. Если коллекторские свойства улучшаются в направлении к сводовой части залежи, размещать скважины целесообразно главным образом в наиболее повышенной части структуры. Промышленная апробация размещения скважин в центральных частях крупных месторождений показала высокую эффективность этого мероприятия.

При размещении скважин на газовой залежи с водонапорным режимом следует исходить из соображений обеспечения возможно более равномерного внедрения краевой воды в залежь. Поэтому задача размещения скважин должна решаться в сочетании с задачей вовлечения в процесс дренирования всей газонасыщенной мощности пород в скважинах. Выполнение этого условия в большей степени обеспечивает равномерная сетка размещения скважин, при которой уменьшается возможность образования неизвлекаемых целиков газа, образующихся вследствие неоднородного строения пластов в тупиковых зонах.

Геологическое строение залежей оказывает влияние на решение вопроса о выделении эксплуатационных объектов, разбуриваемых самостоятельными сериями скважин. Залежи массивного строения, представляющие собой четко выраженные единые гидродинамические системы, даже в случае большой мощности продуктивных отложений, достигающей нескольких сот метров, при газовом режиме можно разрабатывать одной серией скважин, т. е. как единый эксплуатационный объект.

При пластовом строении залежей в условиях затрудненной сообщаемости пластов и большой суммарной газонасыщенной мощности как при газовом, так и при водонапорном режиме целесообразнее выделять два-три объекта разработки и более. Такое решение обеспечивает большие возможности управления разработкой каждого из объектов. При сходности коллекторских свойств пород в условиях пластового строения залежи и относительно небольшой суммарной мощности пластов по экономическим соображениям может оказаться целесообразным и объединение всех пластов в один эксплуатационный объект. Возможен и такой вариант разбуривания, когда первую очередь скважин, необходимых для опытно-промышленной эксплуатации, бурят со вскрытием всех пластов, а в последующих уплотняющих скважинах пласты вскрываются выборочно.

Значительное влияние на системы разработки и обустройства газовых месторождений оказывает глубина залежей. При инфильтрационной природе пластового давления (а именно в этих условиях наиболее вероятно проявление активного водонапорного режима) глубина залегания продуктивного пласта определяет величину начального давления. Последнее .же влияет на начальные дебиты скважин н на динамику добычи газа из залежи.

При разработке газоконденсатных залежей с поддержанием пластового давления влияние геологических факторов на выбор системы и на показатели „разработки еще более увеличивается. Обоснование расположения нагнетательных и добывающих скважин и эффективность процесса воздействия на газоконденсатную залежь во многом будут определяться теми же геологическими факторами, что и при нагнетании воды в нефтяную залежь,— размером залежи, ее тектоническим строением, коллекторскими свойствами пород, характером и степенью макро-и микронеоднородности и др.

При закачке в пласт сухого газа при обосновании системы размещения нагнетательных и добывающих скважин следует учитывать, наличие или отсутствие связи залежи с законтурной областью, размеры залежи, углы падения пород. При небольших размерах залежи, значительных углах падения пород и отсутствии взаимодействия залежи с законтурной областью (залежь литологического типа с наличием вторичного «запечатывающего» слоя у ее основания) предпочтение может быть отдано варианту с размещением нагнетательных скважин во внутренней части залежи, а добывающих—во внешней. Этот вариант имеет следующие преимущества: направленность вытеснения более плотного пластового газа менее плотным сухим сверху вниз, что обеспечивает высокую эффективность процесса: отсутствие геологических предпосылок для оттеснения части пластового газа за пределы залежи: возможность перевода нагнетательных скважин в фонд добывающих после завершения сайклинг-процесса.

В лекции "30 Южно-Уральский государственный природный заповедник" также много полезной информации.

При хорошей связи залежей с водонапорной системой, особенно при пологом залегании пластов, большими преимуществами обладает вариант с размещением нагнетательных скважин в периферийной части залежи, а добывающих—во внутренней. В указанных геологических условиях применение такой системы разработки обеспечивает условия для продолжительной безводной эксплуатации добывающих скважин, располагаемых вдали от контура газоносности. Повышение пластового давления в зоне расположения нагнетательных скважин резко снижает возможность внедрения в залежь контурной воды. Большая площадь газоносности служит благоприятной предпосылкой для равномерного размещения добывающих и нагнетательных скважин по площади, т. е. для системы, подобной площадной, применяемой при разработке нефтяных залежей, но при больших расстояниях между скважинами.

С применением заводнения газаконденсатные залежи могут разрабатываться при высокой проницаемости пород-коллекторов, обеспечивающих достаточную приемистость нагнетательных скважин. На небольших залежах более целесообразно законтурное заводнение, на больших—внутриконтурное—площадное или с расположением нагнетательных скважин рядами.

Влияние геологической неоднородности пластов на разработку газоконденсатных залежей весьма существенно при использовании любого рабочего агента. При нагнетании сухого газа могут произойти преждевременные прорывы его к забоям добывающих скважин. Это снижает эффективность процесса извлечения конденсата из недр, приводит к увеличению его продолжительности и требует значительного суммарного объема закачиваемого газа. При заводнении из-за неоднородности пластов возможно опережающее движение воды по наиболее проницаемым прослоям, преждевременное обводнение добывающих скважин.

Большое влияние на выбор системы разработки, и в первую очередь на количество скважин, оказывает прочность пластов-коллекторов, т. е. устойчивость против разрушения при эксплуатации скважин. Вследствие высоких дебитов газовых скважин разрушение призабойных зон пластов носит более интенсивный характер, чем при эксплуатации нефтяных скважин. Наиболее подвержены разрушению терригенные породы— слабосцементированные и с легко разрушающимся глинистым цементом. Процесс разрушения пород особенно активизируется при обводнении скважин, поскольку вода способствует разбуханию и деформации цемента. Торможение этого процесса может быть обеспечено установкой в скважинах против дренируемых пластов специальных фильтров, проведением мероприятий по управлению процессом разработки для продления периода безводной эксплуатации скважин, ограничением дебита скважин. В последнем случае требуется соответствующее увеличение количества скважин для обеспечения заданной динамики добычи газа. Ожидаемые масштабы разрушения пород при эксплуатации газовых скважин и возможные меры по ограничению этого процесса должны обосновываться в периоды разведки и опытно-промышленной эксплуатации месторождения путем соответствующего изучения керна и исследования безводных и обводняющихся скважин на различных режимах.

Как видно из изложенного, геологические факторы оказывают большое влияние на выбор системы и условия разработки газовых и газоконденсатных месторождений, но на их основе даются лишь предварительные рекомендации о возможных технологических решениях. Это обусловлено тем, что на выбор систем разработки газовых залежей в большей степени по сравнению с нефтяными оказывают влияние такие факторы, как заданный темп разработки месторождения, соответствующая ему скорость снижения пластового давления, требующийся комплекс промысловых сооружений и необходимые сроки их строительства при разных вариантах размещения скважин, технические возможности по закачке в пласты газа или воды и др.

Так же как и по нефтяным месторождениям, рациональные системы разработки газовых месторождений, учитывающие весь комплекс факторов, обосновываются путем газогидродинамических расчетов нескольких вариантов разработки, наиболее полно учитывающих геологопромысловую характеристику месторождения, и выбора оптимального варианта по результатам сравнения.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее