Популярные услуги

Курсовой проект по деталям машин под ключ
ДЗ по ТММ в бауманке
Курсовой проект по деталям машин под ключ в бауманке
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
КМ-4. Типовое задание к теме косвенные измерения. Контрольная работа - любой вариант за 5 суток.
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
КМ-3. Задание по Matlab/Scilab. Контрольная работа - любой вариант за 3 суток!
Главная » Лекции » Инженерия » Тепломеханическое и вспомогательное оборудование электростанций » Технологическое оборудование и автоматизация топливоподачи

Технологическое оборудование и автоматизация топливоподачи

2021-03-09СтудИзба

Технологическое оборудование и автоматизация топливоподачи

Ленточные конвейеры                 

В системе топливоподачи ТЭС ленточные конвейеры получили наибольшее распространение. По сравнению с другими типами конвейеров (пластинчатыми, скребковыми, ковшовыми, винтовыми) для них характер­ны следующие основные достоинства: небольшая масса, значительная еди­ничная длина (до нескольких сотен метров), весьма высокая скорость перемещения топлива, обеспечивающая большую производительность, сравнительно небольшие затраты мощности, эксплуатационная надеж­ность, простота обслуживания и ремонта, возможность автоматизации.

Основные элементы ленточного конвейера (рис. 2.1): опорная металлоконструкция (рама конвейера); гибкая бесконечная лента, служащая одновременно тяговым и грузонесущим органом; приводной барабан с электроприводом; роликоопоры, поддерживающие ленту по длине конвейера; натяжное устройство для ленты.

Топливо поступает на верхнюю (рабочую) ветвь ленты через загрузоч­ное устройство, а разгружается с конвейера специальными разгрузочными устройствами или через приводной барабан конвейера. Кроме того, в состав конвейера входят амортизирующие, центрирующие и переходные роликоопоры, устройства для очистки ленты, тормозные устройства, приборы для контроля и автоматизации и пр.

Ленточные конвейеры выполняют горизонтальными, наклонными или состоящими из горизонтальных и наклонных участков. Угол наклона конвейеров принимается не более 18° для всех видов топлива. В местах нагрузки крупнокускового топлива угол наклона конвейеров прини­мается 12° (допускается 15°).

В трактах топливоподачи ТЭС используются конвейеры с желобчатым поперечным профилем рабочей ветви ленты (рис. 2.1). Для этого применяются желобчатые трехроликовые опоры с углом наклона боковых роликов 30° и более. Для поддержания холостой ветви ленты применяют горизонтальные однороликовые или двухроликовые опоры с углом на­клона роликов 10°.

/ конвейерная лента; 2 - приводной барабан; 3 — электродвигатель; 4 - ре­дуктор; 5 - верхние роликоопоры; 6 - нижняя роликоопора; 7 - натяжной барабан 8 - опорная металлоконструкция; 9 - пересыпной короб; 10 - разгрузочная (уголовная) воронка; 11 - скребок; 12 - отклоняющий барабан; 13 - скребок; / /    натяжное устройство; 15 - приемный лоток

Рекомендуемые материалы

Питатели

Топливо из бункеров подается на ленточные конвейеры питателями. Наиболее часто применяются ленточные, качающиеся, лопастные и реже пластинчатые питатели. Выбор типа питателя определяется его производительностью, характеристиками топлива, а также компоновочными усло­виями.

Конструкция ленточных питателей такая же, как у ленточных конвейеров, только лента питателя обычно плоская. Рабочая ветвь ленты поддерживается роликами, установленными с шагом 250—500 мм. Холостая ветвь ленты у длинных питателей поддерживается роликами, а у корот­ких провисает свободно между барабанами. На рабочей ветви ленты пита­теля устанавливаются неподвижные борта. Расстояние между бортами принимается 0,8-0,85, а высота бортов — 0,25-0,5 ширины ленты пи­тателя.

Для ленточных питателей применяют ленту шириной 1400—1600 мм, а! в местах загрузки питателей устанавливают под лентой металлический лист или барабаны диаметром 400—500 мм, снабженные усиленными подшипниками по сравнению с подшипниками для обычных роликовых опор. Скорость ленточных питателей принимается в пределах 0,05— 0,45 м/с. Производительность питателя регулируется очень часто измене­нием толщины слоя топлива на ленте шибером, монтируемым в месте поступления топлива на ленту, или изменением скорости движения ленты при установке много скоростного электродвигателя. Производи­тельность ленточных питателей (), т/ч, рассчитывается по формуле

 (2.1)

где b — расстояние между бортами, м;  — высота бортов, м; рн - насыпная плотность топлива, т/м3; m - коэффициент использования объема желоба, принимаемый 0,75   0,7; V  -  скорость ленты, м/с.

Ленточные питатели просты по конструкции и в обслуживании, однако требуют постоянного наблюдения, периодической регулировки винтовы­ми натяжными устройствами натяжения ленты.

В разгрузочных устройствах со щелевыми бункерами применяются самоходные лопастные питатели (рис. 2.2). Под выпускной щелью такого бункера устанавливается стол, и лопастной питатель разгружает топливо по всей длине бункера, передвигаясь вдоль него. Рабочий орган лопаст­ного питателя представляет собой вращающееся на вертикальном валу горизонтальное лопастное колесо, которое сбрасывает топливо со стола бункера на конвейер. Лопастное колесо с приводом смонтировано на те­лежке, двигающейся по рельсам. Тележка передвигается одновременно с вращением лопастного колеса. Изменение направления движения тележ­ки достигается за счет изменения направления вращения ротора электро­двигателя механизма перемещения при помощи концевых выключателей.

2. Самоходный лопастной питатель:

а - расчетная схема производительности лопастного питателя; б - схема уста­новки лопастного питателя; 1 - разгрузочный стол; 2 - лопастное колесо; 3 - за­топка; 4 - бункер; 5 - троллеи; 6 - лопастной питатель; 7- ленточный конвейер

Производительность, т/ч, лопастного питателя определяется по формуле

 (2.2)

|де Fплощадь живого сечения топлива, захватываемого лопастью, м2; - насыпная плотность топлива, т/м3; r0 - расстояние центра тяжести площади живого сечения топлива, захватываемого лопастью, от оси вра­щения лопастного колеса, м; п - частота вращения лопастного колеса, об/мин; V п — скорость поступательного движения питателя, м/с.

Знак плюс берется, когда направление хода тележки питателя совпа­дает с направлением окружной скорости лопастного колеса, а знак ми­нус   - при несовпадении этих направлений.

Рис. 2.3. Схема пластинчатого питателя:

/ - тяговые цепи; 2 - натяжное винтовое устройство; 3 - настил; 4 - заслонка; 5 - приводные звездочки; 6 - редукторный привод; 7 - направляющие для цепей

Рис. 2.4. Схема качающегося питателя:

- лоток; 2 - шатунно-кривошипный механизм; 3 - приемная воронка; . 4 - заслонка;   5 - загрузочный рукав

Для выдачи топлива из бункера на кранах-перегружателях, которыми оборудованы склады топлива, применяются, как правило, пластинчатые! питатели. Питатель состоит из рамы верхних и нижних опорных роликов, рабочего полотна, ведущего вала со звездочкой, натяжного устройства, электродвигателя и редуктора (рис. 2.3). Рабочее полотно выполнено из отдельных пластин-звеньев, отлитых из износостойкой стали. Для регулирования производительности питателей их приводы укомплектованы четырехскоростными электродвигателями. ч

Пластинчатые питатели имеют большую металлоемкость, значитель-1 ный износ ходовой части, повышенный расход электроэнергии. При! защемлении между пластинами прочных кусков, например колчедана,! возможна поломка пластин. Пластинчатые питатели используются для! перегрузки топлива с очень крупными кусками.

Под приемными бункерами выдачи топлива со склада устанавливаются! качающиеся питатели. Они представляют собой горизонтальный или наклонный (с наклоном вниз) лоток, опирающийся на опоры и совершающий возвратно-поступательное движение (рис. 2.4). При прямом ходе лотка лежащий на нем слой топлива увлекается в сторону движения трением. При этом из бункера на лоток в образовавшееся под отверстием» свободное пространство поступает некоторое количество топлива, заполняя его. При обратном ходе топливо частично ссыпается через переднюю» кромку лотка в разгрузочный рукав. Производительность качающихся питателей регулируется перестановкой задвижки и изменением хода лотка.

На зарубежных ТЭС под бункерами угля на тракте топливоподачи 1 нашли широкое распространение вибрационные питатели.

Дробилки и грохоты

Топливо на электростанции дробится в одну стадию, если размер куска не превышает 25—30 мм, и в две стадии, если куски крупные (первая ступень грубого, а вторая тонкого дробления). Дробилки грубого дробления устанавливают в начале тракта топливоподачи в приемно-разгрузочном устройстве, а дробилки тонкого дробления - перед подачей топлива в главный корпус электростанции.

Для грубого дробления топлива используют дробильно-фрезерные машины, дискозубчатые и валковые зубчатые дробилки, а для тонкого дробления — молотковые. Важнейшие показатели работы дробилок — кратность дробления, т.е. отношение размеров кусков топлива на входе в дробилку и выходе из нее, а также удельный расход электроэнергии I на дробление.

Рис. 2.5. Способы измельчения топлива:

а - г - удар; д - истирание; е - раздавливание; ж — раскалывание

В дробилках топливо измельчается ударом, истиранием, раздавлива­нием, раскалыванием (рис. 2.5). В конкретной конструкции дробилки обычно преобладает один из этих способов, а остальные могут присутствовать в том или ином сочетании с ним. Например, в молотковых дробилках основной способ измельчения — удар (по схемам б, в, г), а вспомогатель­ный — истирание.

В корпусе дискозубчатой дробилки (рис. 2.6) вращаются навстречу друг другу два горизонтальных ротора, представляющих собой валы с насаженными на них и жестко закрепленными дисками с зубьями — Рабочими элементами дробилки. Поступающие в дробилку куски топли­ва захватываются зубьями, раскалываются и разламываются ими и измельченные выбрасываются в разгрузочную воронку. Каждый ротор дискозубчатой дробилки снабжен собственным клиноременным приводом от отдельного электродвигателя. Ступица приводного шкива соединена с заклиненной на валу втулкой через предохранительный штифт. При нагрузках выше предельной штифт срезается, а электродвигатели отклю­чаются. Частота вращения ведущего ротора на 15% больше частоты враще­ния ведомого. Это улучшает захват и дробление кусков топлива. Техни­ческие характеристики дискозубчатых дробилок приведены в табл. 2.1.

Дискозубчатым дробилкам присущ ряд недостатков: при попадании больших кусков топлива, породы и особенно металла зубья нередко ло­маются; дробилки пропускают много крупных кусков, не разламывая их; влажное и многозольное топливо усиленно замазывают дробилки. Удельный расход электроэнергии на дробление топлива в дискозубчатых дробилках составляет 0,1 кВт • ч/т.

Таблица 2.1. Технические характеристики дискозубчатых дробилок

Показатель

Тип дробилки

ДДЗ = 1250x1000

ДДЗ = 1250X1800

Производительность, т/ч

700

1200

Диаметр ротора (по выступам

зубьев), мм

1250

1250

Длина ротора (рабочая), мм

1000

1800

Частота вращения ротора, об/мин:

ведущего

200

200

ведомого

170

170

Наибольший размер загружаемых

кусков, мм

900

900

Размер продукта дробления, мм

До 250

До 250


Рис. 2.(). Дискозубчатая дробилка:

1 - ротор; 2      корпус; $     электродвигатель; 4     механическое реле оборотов

Валковые зубчатые дробилки (рис. 2.7) выполняются с двумя горизонтальными параллельно расположенными и вращающимися навстречу друг другу цилиндрическими валками с зубьями на их рабочей поверхности. Подшипники вала одного из валков могут смещаться в горизонтальном направлении по специальным салазкам с мощными пружинными амортизаторами. Топливо в дробилку поступает сверху непосредственно на вращающиеся валки, силой трения затягивается между валками раздавливается ими и раскалывается зубьями. При попадании вместе с топливом твердой породы или кусков металла подвижный валок отжимается от неподвижного, что предохраняет дробилку от поломок. Производительность валковой зубчатой дробилки марки ДДЗ-16 составляет  650 т/ч при крупности дробленого топлива до  200 мм и 1000 т/ч при крупности дробленого топлива до 300 мм. Диаметр и валков 1600 мм, рабочая длина 2000 мм, частота вращения 41 об/мин, регулировка щели между валками — до 440 мм, мощность электродвигателя 320 кВт, общая масса дробилки - около 11,5 т, удельный расход электроэнергии 0,15—0,3 кВт • ч/т, кратность дробления в валковых дробилках невелика и не превышает 3—5. Производительность валковой губчатой дробилки Вдр, т/ч, можно определить по формуле:

(2.3)

где.

А — коэффициент пропорциональности; Dвдиаметр валка, n - частота вращения валков, об/ч; Lдлина валка, м;  — размер щели между валками, м; f — площадь, занимаемая зубьями в щели, м;   - кажущаяся плотность топлива, т/м3; кяокоэффициент размолоспособности.

Рис. 2.7. Валковая зубчатая дробилка:

1 - валок с зубьями; ,2 - корпус дробилки

Молотковая дробилка выполняется, как правило, с одним роторе (рис. 2.8), который представляет собой вал с насаженными на не дисками. На некотором расстоянии от центра дисков равномерно окружности пропущено несколько осей и на них между дисками свобод подвешены молотки (била) — основные рабочие элементы дробилки корпусе дробилки находятся отбойная плита, отбойный брус и я колосниковые решетки, одна - выдвижная, другая — повороти; Топливо   подается  в  дробилку  сверху через  загрузочную  горловину

При вращении ротора молотки ударяют по кускам падающего топлива разбивают их и отбрасывают с большой скоростью на отбойную плиту при ударе о которую куски также разрушаются, а окончательное дробление в форме истирания и раздавливания происходит, когда топливо оказывается между отбойным брусом и молотками, а затем меж молотками и колосниковыми решетками. Для того, чтобы удар молот пришелся по куску топлива, необходимо, чтобы высота молотка h, была больше пути, проходимого куском топлива за время t, за которое ротор молотковой дробилки повернется на угол, соответствующий шагу между билами, т. е. должно соблюдаться неравенство h >сr где с — скорость, приобретаемая куском топлива при высоте его свобод пою падения, м/с:


Рис. 2.8. Молотковая дробилка:

1 - ротор; 2 - отбойная плита; 3 ~ отбойный брус; 4 - поворотная колоснике вая решетка; 5 - выдвижная колосниковая решетка; 6 - корпус

g — ускорение свободного падения, м/с2; к к — высота падения куска топлива, м; г = пО/гы = 60/гп; В — диаметр внешней окружности, описы^ ваемой молотками, м; 2 — число молотков по окружности диска; и -| окружная скорость молотков, м/с; п — частота вращения ротора дробил! ки, об/мин. Обычно принимается

(2.4)1

Это соотношение позволяет выбрать необходимые параметры молотковой! дробилки.

Угол наклона отбойной плиты можно менять с помощью винтовых| механизмов. Отбойный брус перемещается в направляющих также А помощью ВИНТОВЫХ механизмом. Зазор между ротором в его рабочем' состоянии, отбойным брусом и колосниковыми решетками должен регу­лироваться по мере износа МОЛОТКОВ и поддерживаться равным при­мерно 10 мм.

Молотки, отбойная плита и брус, а также колосниковые решетки] быстро изнашиваются. Для повышения срока службы молотки должны изготовляться из стали твердых марок с термической обработкой. Их рабочие поверхности наплавляются износостойкими (например, мар­ганцовистыми) сталями. После износа рабочих кромок молотков с одной стороны их поворачивают на 180°. Длительность непрерывной работы молотков составляет примерно 700 ч. Отбойные плиты и брус футеруются сменной броней. Технические характеристики молотковых дробилок приведены в табл. 2.2.

При дроблении высоковлажного топлива колосниковые решетки быст­ро замазываются, топливо налипает на стенки дробилки, она заваливается юпливом и ее производительность резко снижается. Дробилку прихо-п.и гея останавливать и чистить вручную.

Таблица 2.2. Технические характеристики молотковых дробилок

Показатель                 —

Тип дробилки

М13-16В

М20-20 Г

М20-30 Г

Производительность, т/ч

150-200

600-800

900-1200

Диаметр ротора, мм

1300

2000

2000

Длина рабочей части

ротора, мм

1600

2000

3000

Частота вращения ротора,

об/мин

735

595

595

Наибольший размер загружаемых кусков, мм

400

600

600

Размер выходящих кусков, мм

До 10

До 15

До 15

Габаритные размеры дробилки, мм (длина х ширина х

и высота)

2400x2740x1900

4535x3800x3100

5270x3800x3100

Масса без электродвигателя, кг

12 550

41 200

53 800

Мощность электродвигатели, кВт

200-250

800

1250

Чистота вращения электродвигателя, об/мин

*

595

595

.

* Оговаривается в заказе-наряде

Для улучшения условий работы молотковых дробилок мелкий уголь отсеивается устанавливаемыми перед ними грохотами, и поток этого угля направляется на конвейер, минуя дробилку. Наиболее распространены грохоты в виде наклонных веерообразных неподвижных решеток с продольными щелями.

Топливо по грохоту должно проходить самотеком, поэтому угол наклона решеток принимается 50—55°, меньшее значение относится к менее влажному и незамазывающемуся топливу. Веерообразность решеток (с расширяющимися вниз щелями) создает лучшие условия для отсеива­ния мелочи, и решетки меньше забиваются и замазываются топливом. И верхней части решеток зазор принимается равным 15—35 мм (меньшее значение для хорошо сыпучих топлив), а в нижней — 0,6 нижнего размера.

Металлоуловители

Во время добычи и при транспортировке топлива в него попадают металлические предметы (магнитные и немагнитные), которые, проходя по топливному тракту станции, могут повреждать оборудование (пита­нии, конвейерные ленты, дискозубчатые и молотковые дробилки, среднеходные и быстроходные мельницы), поэтому желательно избавляться. В них в самом начале тракта. Магнитные предметы удаляются из топлива шкивными и подвесными магнитными сепараторами с питанием обмоток возбуждения постоянным током напряжением 110-220 В.

Рис. 2.9. Типы металлоуловителей

а - шкивный; б - подвесной; в - саморазгружающийся, установленный над!
конвейерной лентой; г - саморазгружающийся, установленный у приводного барабана; 1 - шкивный магнитный сепаратор; 2 - пересыпной короб для топлива- 3 -короб для металла; 4 - приводной барабан конвейера; 5 - подвесной электромагнит; 6 - бункер для металла; 7 - грузовой электромагнит; 8 - лента конвейера-очистителя

Шкивные магнитные сепараторы устанавливают вместо приводных барабанов ленточных конвейеров (рис. 2.9, а). Магнитную систему шкивного сепаратора размещают внутри вращающегося барабана. Двигаясь на ленте вместе с топливом, магнитные предметы попадают в магнитное поле сепаратора и притягиваются к барабану. Существенное влияние на извлечение и разгрузку магнитных предметов оказывает скорость движения
ленты конвейера: при малых скоростях (менее 1,25 м/с) ухудшается отрыв извлеченных магнитных предметов в зоне разгрузки, а при больших (более 2 м/с) снижается извлекающая способность шкивов. Частота
вращения шкивного сепаратора - не более 50-60 об/мин, удельный
расход энергии 0,01-0,02 кВт • ч/т угля. Ориентировочная толщина слоя
транспортируемого угля на ленте конвейера составляет не более
170-300 мм.                                                                                                                      

При работе шкивных сепараторов вместе с металлом сбрасывается в отдельную течку и много топлива, особенно с плохой сыпучестью.

Подвесные электромагнитные сепараторы типа ЭШМ и ЭП2М устанавливаются на ленточных конвейерах с лентой шириной 650-1600 мм, со скоростью движения не более 2 м/с (рис. 2.9, б). Высота подвески сепараторов над конвейерной лентой — не более 160—180 мм. Основные  недостатки: небольшая мощность и недостаточная подъемная сила для улавливая крупных и потому наиболее опасных для оборудования пред­метов, малая предельно допускаемая толщина слоя угля на конвейере, возможность продольного пореза конвейерной ленты при улавливании длинных металлических предметов.

Более совершенны подвесные саморазгружающиеся электромагнитные сепараторы типа ЭПР-120В и ЭПР-160В. Они устанавливаются на ленточ­ных конвейерах с шириной ленты соответственно 1000—1200 и 1400—1600 мм со скоростью движения не более 4,5 м/с. Магнитные предметы притягиваются к электромагниту, а затем разгрузочной лентой разгружаются в специальный бункер. Разгрузочная лента приводится в движение от электропривода, смонтированного на общей раме магнитного сепаратора. Привод разгрузочной ленты включается автоматически по сигналу металлоискателя, установленного перед сепаратором. Самораз­гружающиеся сепараторы устанавливаются над лентой конвейера или в узле пересыпки над приводным барабаном ленточного конвейера (рис. 2.9, в, г).

Немагнитные металлические предметы могут удаляться из потока топлива устройствами механического типа, срабатывающими по сигналу металлоискателя и сбрасывающими в бункер вместе с частью топлива металл. Накопившееся в бункере топливо отделяется от металла и воз­вращается в тракт топливоподачи.

На ряде зарубежных электростанций отделение металла, породы и дру­гих посторонних предметов от топлива совмещают с дроблением по­следнего в дробилках, состоящих из размещенного внутри уплотненного кожуха дырчатого барабана, на внутренней боковой поверхности кото­рого установлены в шахматном порядке специальные пластины. При вращении барабана куски топлива и металла захватываются этими пласти­нами, поднимаются, и уголь, падая, дробится до размера отверстий в ба­рабане. Металл и порода перемещаются к выходу дробилки и выбрасы­ваются из нее.

Щепоуловители

Для удаления из потока топлива посторонних неметаллических предметов (древесины и других предметов) на тракте топливоподачи устанавливаются специальные устройства — щепоуловители.

Для улавливания длинномерных предметов используются роликовые наклонные грохоты. Они устанавливаются у приводных барабанов (питателей разгрузочного устройства или ленточных конвейеров) и представ­ляют собой два-три прямых ролика, каждый из которых подвешен на самостоятельных качающихся (шарнирных) подвесках — тягах (рис. 2.10). Ролики установлены со смещением по высоте и располагаются относительно потока топлива таким образом, что длинномерные предметы при сходе с приводного барабана попадают на ролики и скатываются по ним в отдельную емкость. Свободная подвеска роликов устраняет воз­можность забивания такого грохота большими кусками угля, а также замазывание его влажным и глинистым топливом. Улавливание мелкой щепы организовывают на тракте топливоподачи после молотковых дро­билок или в системах пылеприготовления. В последнем случае между мельницей и сепаратором пыли или на течке возврата от сепаратора уста­навливаются щепоуловители разных типов, часто в виде неподвижных ре­шеток.

Рис. 2.10. Устройство для улавливания длинномерных предметов:

1 - приводной барабан конвейера; 2 - ролик; 3 - подвеска; 4 — вал в подшипниках; 5 - ящик для уловленных предметов

Установки для отбора и разделки проб топлива

Для определения технико-экономических показателей работы электростанции необходимо контролировать качество сжигаемого топлива. С этой целью проводится отбор представительной пробы топлива, ее разделка, сокращение и анализ. Основное требование заключается в том, чтобы обеспечивалось полное соответствие отобранной пробы среднему каче­ству сжигаемого топлива.

Это достигается при полной механизации и автоматизации процесса отбора и разделки проб топлива. Механические пробоотборники размещаются обычно на топливоподающем тракте в узле пересыпки с конвейеров второго подъема (после дробильного корпуса) на конвейеры бункерной галереи.

В узле пересыпки устанавливается наиболее распространенный пробоотборник ВТИ с заводным механизмом и ковшом-высекателем (рис. 2.11). Пробоотборный элемент находится внутри кожуха привод­ного барабана конвейера и подвешен на рычагах к валу. На валу сидит кривошип, а с ним соединен шток специального заводного механизма, который приводится от электродвигателя через редуктор и цепную пере­дачу. Вал периодически (с заданной частотой) поворачивается на угол 52°. Ковш-высекатель пересекает при этом поток топлива, падающий с кон нсйерной ленты в пересыпную течку, забирает порцию топлива и забра­сывает ее в приемную течку первичных проб. Перед отверстием приемной течки установлена автоматически действующая заслонка: за 10—30 с до срабатывания пробоотборника она открывается, а после заброса пор­ции топлива закрывается в течение такого же промежутка времени. За­слонка не допускает самопроизвольного попадания в отобранную пробу частиц топлива и пыли из потока и гарантирует сохранение влажности средней пробы.


Рис. 2.11. Пробоотборник системы ВТИ:

/ - приводной барабан конвейера; 2 - вал отбирающего элемента; 3 - ковш-высекатель; 4 - пересыпной короб; 5 - короб первичных проб топлива; 6 - заслон­ка приемного отверстия течки; 7 - привод заслонки; 8 - заводной механизм; 9 - привод заводного механизма

Ковш-высекатель имеет параболический профиль, ширина раскрытия его принимается, как правило, равной 100 мм, глубина 65 мм. При влажном топливе ковш-высекатель должен быть изготовлен из нержа­веющей стали. По течке отбора порции топлива поступают в накопитель­ный бункер, вместимость которого соответствует суточной пробе с запа­сом 25%.ее массы. Снизу бункер перекрыт шибером, который откры­вается при разделке пробы. Накопленная в бункере первичная проба в разделочной установке измельчается, и ее масса сокращается до лабора­торной.

Разделочная установка представляет собой агрегат, состоящий из питателя, молотковой дробилки и двухступенчатого порционера-сократителя. При открытии расположенного под бункером шибера топливо питателем подается в дробилку, где измельчается до размеров фракции 0—3 мм. Затем в порционере-сократителе измельченное топливо перемешивается и отдельные порции пробы (лабораторной) собираются в специальные сосуды, в которых проба поступает на анализ в химическую лабораторию. Избыток топлива возвращается на конвейер.

Обеспыливание тракта топливоподачи

При разгрузке и транспортировке топлива, пересыпке его с конвейера на конвейер и при дроблении, при загрузке бункеров сырого угля и других операциях с топливом на тракте топливоподачи возникает пыление. Потоками   воздуха  пыль  распространяется  по  тракту  топливоподачи, и ее концентрация в воздухе может достичь пожаро- и взрывоопасных значений.

Топливная пыль вредна для здоровья обслуживающего персонала. Наиболее неблагоприятны для организма человека пылевые частицы размером 0,5—5 мкм, легко проникающие в легочную ткань. Концентрация 1 угольной пыли в воздухе производственных помещений не должна быть 1 более 10 мг/м3. Пыль вызывает также повышенный износ оборудования, 1 а уборка пыли в помещениях топливо подающего тракта требует значительных трудозатрат. Эффективное обеспыливание — основное средство, I предупреждающее пожарную опасность, профессиональные заболевания, I износ технологического оборудования, потери сырья и т.д.

Сильно пылят пересыпные узлы, течки (особенно после дробилок) и приемные лотки. Транспортируемое топливо эжектирует воздух, нагнетает его в приемные лотки конвейеров и тем самым создает в них избыточное статическое давление (до 4 Па). Роторы дробилок создают при 1 вращении вентиляторный эффект, и избыточное давление в приемных лотках после них увеличивается до 6—8 Па. Пыль может выбиваться также за счет кинетической энергии падающих частиц.

При пересыпке топлива с конвейера на конвейер падающее топливо увлекает вниз запыленный воздух и вверху течек создается разрежение (до 2 Па), а внизу - избыточное статическое давление. На участках
тракта с разрежением запыленность воздуха низкая, поэтому зону
наибольшего избыточного давления в приемном лотке укрытия соединяют трубами рециркуляции с зоной наибольшего разрежения в течке 1
лотка.                                                                                                                                    

Очаги пыления уплотняют. В приемных лотках ленточных конвейеров рекомендуется установка нескольких рядов фартуков, для чего длина лотка увеличивается до 10-12 м. Все узлы пересылок должны быть оборудованы укрытиями, защищающими от пыления при падении угля с большой высоты. Если одними уплотнениями не достигаются установленные санитарные нормы, то используется ряд дополнительных мероприятий: аспирация, паро-, гидро- и пенообеспыливание.                                                                    I

Для отсасывания воздуха и создания в лотках разрежения предусматриваются аспирационные установки.  Они оборудуются центробежными пылевыми  вентиляторами  и  циклонами для одно- и двухступенчатой очистки воздуха от пыли  (рис. 2.12). Для одновременного включения конвейера и вентилятора его  аспирационной установки их двигатели и блокируются.

При парообеспыливании в приемный лоток навстречу потоку топлива
через одно или два сопла подается насыщенный пар давлением около
0,5 МПа. Струя пара эжектирует воздух, создает противопоток, направленный по лотку и течке снизу вверх, и таким образом предотвращается пыление из  выходного  отверстия лотка.  Одновременно увлажняются частицы взвешенной пыли. Расход пара на 1 т топлива составляет 0,3—0,4 кг. Достоинства парообеспыливания — простота обслуживания и малые капитальные затраты, недостатки — повышенный коррозионный износ стенок течек и лотков, налипание топлива на увлажненных по­верхностях течек, большие потери пара и теплоты.

Рис. 2.12. Схема аспирационной установки:

1 - воздухопылепровод; 2 - циклон; 3 - шнек; 4 - скруббер-циклон; 5 -подвод воды; 6 - выход шлама; 7 - вентилятор

При гидрообеспыливании создается водяная завеса или туман на пути движения запыленного воздуха и увлажняются взвешенные в воздухе частицы пыли. Вода от производственного водопровода под давлением 0,3—0,4 МПа подводится через фильтры и дозатор к установленным в лотке форсункам. В дозаторе к технической воде добавляется смачи­ватель, который ослабляет поверхностное натяжение воды, в результате чего частицы пыли лучше смачиваются.

Гидрообеспыливание может применяться как дополнительная мера к аспирационной установке.

Наиболее трудно добиться обеспыливания разгрузочных устройств с вагоноопрокидывателями. Эту проблему не позволяют решить до конца и специальные укрытия над бункером вагоноопрокидывателя с интенсив­ным отсосом запыленного воздуха. При гидрообеспыливании помещение вагоноопрокидывателей необходимо утеплять.

При пенообеспыливании приемный лоток конвейера заполняется высокократной воздушно-механической пеной, создаваемой специальным пеногенератором (рис. 2.13). За счет большой поверхности пены с высо­кими связывающими свойствами предотвращается выбивание пыли из лотка. Слой пены толщиной до 20 мм покрывает топливо, и таким обра­зом исключается вторичный очаг пылеобразования.

В насадок пеногенератора подается под давлением пенораствор и сжатый воздух. Распыленный воздухом пенораствор поступает в диффузор, за которым установлены калибрующие сетки для получения более высо­кой кратности пены (кратностью пены называют отношение ее объема к объему израсходованного на пенообразование раствора, ее значение со­ставляет 300—800). Пена с мелкими однородными по размерам пузырь­ками более устойчива по сравнению с пол и дисперсной пеной. Для ослаб­ления поверхностного натяжения воды в качестве поверхностно-активных веществ используют пенообразователи, являющиеся в основном продуктами переработки нефти. Содержание пенообразователя в пенорастворе составляет 5%. Для получения 1 м3 пены расходуется 3—5 л воды и I 0,2—0,25 л пенообразователя.

Рис.   2.13.  Схема пенообеспыливающей  установки:

1 - пересыпной короб; 2 - прием­ный лоток; 3 - парогенератор; 4 -подвод пенораствора; 5 - подвод сжато­го воздуха; б - насадок; 7- калибрую­щие сетки; 8 - пена; 9 - фартук

Достоинства способа: эффективное смачивание пыли при сравнительно I малых расходах воды, простота использования и исполнения установки. I При уборке помещений осевшую пыль смывают водой.

Учет топлива и весовое хозяйство

Первичные документы по учету топлива на электростанциях: весовая книга, приемные и расходные акты. В весовой книге фиксируется поступление топлива отдельно по каждому его виду. В расходных актах, составляемых ежесменно, указывается расход топлива и место, откуда оно подавалось в бункера котельной: из приемно-разгрузочного устрой­ства ("с колес") или со склада.

В техническом отчете по эксплуатации электростанции за месяц, год даются суммарные показатели поступления и расхода топлива за отчетный период. Учетные данные проверяются при ежеквартальной инвентаризации топлива. Контрольная инвентаризация проводится в период, когда на складах находится наименьшее количество топлива.

Для расчетов с поставщиками взвешиваются поступающие на станцию вагоны с топливом, (порожняк не взвешивается), а для определения технико-экономических показателей работы ТЭС топливо взвешивается на конвейерах перед подачей его в бункера котельной.

При взвешивании рычажными железнодорожными весами вагон дол­жен находиться в статическом состоянии, поэтому основной их недостаток заключается в малой пропускной способности. Более совершенны авто­матические электронно-тензометрические весы, взвешивающие движу­щиеся вагоны без их расцепки с точностью ±1% при скорости движения вагонов до 6 км/ч. Грузоприемное устройство этих весов представляет собой платформу (раму) длиной 7,6 м, подвешенную по четырем углам I на маятниковых подвесках к опорным балкам, уложенным на тумбах фундамента. В конструкцию подвесок встроены силоизмерительные тензорезисторные датчики. Воспринимаемая грузоприемным устройством нагрузка вагонов передается на эти датчики, вырабатьюающие электри­ческий сигнал, пропорциональный приложенной нагрузке.

На весах могут взвешиваться четырех-, шести- и восьмиосные вагоны независимо от порядка следования их в составе. Каждый вагон взвеши­вается в два приема (потележно). Для уменьшения колебаний платформы при начальном наезде колес на правом и левом рельсах весового пути сты­ки между подходным и платформенными рельсами смещены один относительно другого. В результате неодновременного наезда колес одной оси па весовую платформу вынужденные колебания ее резко уменьшаются. Рельсы на весовой платформе лежат на прокладке из транспортерной ленты.

Команда на взвешивание поступает от логической схемы управления, К которой подключены путевые датчики, установленные на платформе весов и срабатывающие от колес вагона в тот момент, когда тележка вагона полностью въезжает на платформу, а тележка предыдущего нагона полностью съезжает с нее. Количество путевых датчиков и геомет­рия их расстановки обеспечивают правильное определение момента взве­шивания разных типов вагонов независимо от направления движения состава.

На подходе к весам (с обеих сторон) установлено по два путевых датчика сигнализатора превышения скорости выше допустимой, к выходу которого подключены лампы светофоров.

Для взвешивания топлива на ленточных конвейерах используются весы типа ЛТМ. Погрешность при взвешивании последними — не более ± 1% при скорости движения конвейерной ленты до 2,5 м/с. Весы устанавливаются на прямолинейном или наклонном участке длиной до 7 м в обе стороны.

Автоматизация топливоподачи

В системе топливоподачи автоматизируется ряд процессов: пуск механизмов и ленточных конвейеров; процесс загрузки бункеров сырого угля котельной путем автоматического управления плужковыми сбрасывателями; отключение механизмов и ленточных конвейеров подачи топ­лива в главный корпус по окончании загрузки; останов всех предьщущих по ходу топлива ленточных конвейеров при пробуксовке, обрыве и схо­де ленты или забивании течек на последующих ленточных конвейерах; автоматизация удаления металла из транспортируемого топлива; вклю­чение вибраторов при застревании угля в узлах пересыпки; пуск и останов аспирационных установок и др. Пуск и останов механизмов топливоподачи необходимо проводить только в определенной последова­тельности, а их нормальная работа возможна лишь при соблюдении необ­ходимых взаимосвязей между механизмами. Чтобы исключить завалы топливом участков топливоподачи и повреждение оборудования, в си­стемах автоматизации топливоподачи предусматривается группа запрет­ных и защитных блокировок.

К их числу относятся блокировки по запрету пуска механизмов в неправильной последовательности и без предупредительного сигнала о пуске; блокировки, запрещающие пуск тракта при неправильном положении шиберов; блокировки, обеспечивающие останов всех предшествующих по ходу топлива механизмов тракта при аварийном останове одного из них, при перегрузке конвейера, обрыве и пробуксовке ленты и др.

Оперативное управление механизмами трактов топливоподачи осуществляется с центрального щита управления топливоподачей, управление вагоноопрокидывателями — с местных щитов.

Центральный щит топливоподачи располагается в отдельно стоящем здании. Он снабжается мнемонической схемой, отображающей тракт топливоподачи. В символы механизмов и шиберов на мнемосхеме встраиваются ключи, переключатели и лампы положения. Ключи предназначены для индивидуального управления режимными шиберами. Переключатели служат в качестве индивидуальных аппаратов выбора механизмов, управление которыми ведется по избирательным схемам, и имеют три фиксированных положения: "включение", "отключение" и "перевод на местное управление".

Для проверки правильности выбора механизмов после того как переключатели механизмов повернуты в положение "включение" или "отключение" лампы их сигнализации переводятся на мигающий свет до тех пор, пока не будет подана исполнительная команда и пока она не будет выполнена механизмами Исполнительная команда "пуск" или "стоп" подается на любую выбранную цепочку механизмов общим на весь щит ключом или кнопками.

Бесплатная лекция: "49 Причины и истоки «холодной войны» " также доступна.

При команде "пуск" во всех помещениях, где находятся запускаемые Я
в работу механизмы, включается предпусковая звуковая сигнализация. Длительность пускового сигнала 10—15 с, по истечении этого времени автоматически включается последний по ходу топлива механизм, а
остальные механизмы включаются в соответствии с вышеизложенными условиями технологических блокировок.

При команде "стоп" происходит так называемый нормальный останов
топливоподачи с предварительным освобождением останавливаемого
тракта от топлива. Для этого сначала отключаются головные механизмы —
питатели топлива, а остальной тракт продолжает работать в течение времени, необходимого для разгрузки от топлива (8—10 мин). Затем отключаются конечный конвейер и по условиям блокировки все предшествующие этому транспортеру механизмы.                                                         

Если необходимо, то с центрального щита можно немедленно остановить любой механизм без освобождения его от топлива. Для этого переключатель нужного механизма переводится в положение "отключение", а затем подается команда "аварийный останов" специальной кнопкой, общей для всех механизмов топливоподачи. Все механизмы на трактах топливоподачи имеют также управление по месту для аварийного отключения и при проведении ремонтных и наладочных работ.

Вспомогательные механизмы - аспирационные установки, вибраторы,
магнитные сепараторы, пробоотборники — не имеют дистанционного
управления с центрального щита и отключаются под действием блокировок.

Для упрощения системы выбора и уменьшения количества переключателей на щите управления может быть применен так называемый автоматический выбор механизмов, основанный на том, что для выбора пути транспортировки топлива достаточно определить головные конвейеры и перевести режимные шиберы и плужковые сбрасыватели на конвейерах и нужное положение; положения всех остальных механизмов после этого определяются однозначно и, следовательно, могут выбираться автоматически.

При автоматизации топливоподачи применяются датчики уровня топлива в бункерах, контроля движения ленты (реле скорости), обрыва, пробуксовки и скоса ленты, контроля наличия слоя топлива на ленте и некоторые другие.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5193
Авторов
на СтудИзбе
433
Средний доход
с одного платного файла
Обучение Подробнее