Популярные услуги

Курсовой проект по деталям машин под ключ
ДЗ по ТММ в бауманке
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
КМ-4. Типовое задание к теме косвенные измерения. Контрольная работа - любой вариант за 5 суток.
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
КМ-3. Задание по Matlab/Scilab. Контрольная работа - любой вариант за 3 суток!
ДЗ по матведу любого варианта за 7 суток

Операционные усилители

2021-03-09СтудИзба

6. Операционные усилители

                6.1. Общие сведения

                Операционным усилителем (ОУ) принято называть интегральный усилитель постоянного тока с дифференциальным входом и двухтактным выходом, предназначенный для работы с цепями обратных связей. Название усилителя обусловлено первоначальной областью его применения - выполнением различных операций над аналоговыми сигналами  (сложение, вычитание, интегрирование и др.). В настоящее время ОУ выполняют роль многофункциональных узлов при реализации разнообразных устройств электроники различного назначения. Они применяются для усиления, ограничения, перемножения, частотной фильтрации, генерации, стабилизации и т.д. сигналов в устройствах непрерывного и импульсного действия.

                Необходимо отметить, что современные монолитные ОУ по своим размерам и цене незначительно отличаются от отдельных дискретных элементов, например, транзисторов. Поэтому выполнение различных устройств на ОУ часто осуществляется значительно проще, чем на дискретных элементах или на усилительных ИМС.

                Идеальный ОУ имеет бесконечно большой коэффициент усиления по напряжению (), бесконечно большое входное сопротивление, бесконечно малое выходное сопротивление, бесконечно большой КОСС и бесконечно широкую полосу рабочих частот. Естественно, что на практике ни одно из этих свойств не может быть осуществлено полностью, однако к ним можно приблизиться в достаточной для многих областей мере.

                На рисунке 6.1 приведено два варианта условных обозначений ОУ - упрощенный (а) и с дополнительными выводами для подключения цепей питания и цепей частотной коррекции (б).

Описание: рис6-1

                На основе требований к характеристикам идеального ОУ можно синтезировать его внутреннюю структуру, представленную на рисунке 6.2.

Рекомендуемые материалы

Описание: Рис6-2

 Упрощенная электрическая схема простого ОУ, реализующая структурную схему рисунка 6.2, показана на рисунке 6.3.

Описание: Рис6

                Данная схема содержит входной ДУ ( и ) с токовым зеркалом ( и ), промежуточные каскады с ОК () и с ОЭ (), и выходной токовый бустер на транзисторах  и . ОУ может содержать цепи частотной коррекции (), цепи питания и термостабилизации (,  и др.), ИСТ и т.д. Двухполярное питание позволяет осуществить гальваническую связь между каскадами ОУ и нулевые потенциалы на его входах и выходе в отсутствии сигнала. С целью получения высокого входного сопротивления входной ДУ может быть выполнен на ПТ. Следует отметить большое разнообразие схемных решений ОУ, однако основные принципы их построения достаточно полно иллюстрирует рисунок 6.3.

                6.2. Основные параметры и характеристики ОУ

                Основным параметром ОУ коэффициент усиления по напряжению без обратной связи , называемый также полным коэффициентом усиления по напряжению. В области НЧ и СЧ он иногда обозначается  и может достигать нескольких десятков и сотен тысяч.

                Важными параметрами ОУ являются его точностные параметры, определяемые входным дифференциальным каскадом. Поскольку точностные параметры ДУ были рассмотрены в подразделе 5.5, то здесь ограничимся их перечислением:

                ¨ напряжение смещения нуля ;

                ¨ температурная чувствительность напряжения смещения нуля ;

                ¨ ток смещения ;

                ¨ средний входной ток .

                Входные и выходные цепи ОУ представляются входным  и выходным  сопротивлениями, приводимыми для ОУ без цепей ООС. Для выходной цепи даются также такие параметры, как максимальный выходной ток  и минимальное сопротивление нагрузки , а иногда и максимальная емкость нагрузки. Входная цепь ОУ может включать емкость между входами и общей шиной. Упрощенные эквивалентные схемы входной и выходной цепи ОУ представлены на рисунке 6.4.

Описание: рис6-4

                Среди параметров ОУ следует отметить КОСС и коэффициент ослабления влияния нестабильности источника питания КОВНП=. Оба этих параметра в современных ОУ имеют свои значения в пределах (60…120)дБ.

                К энергетическим параметрам ОУ относятся напряжение источников питания ±Е, ток потребления  (покоя)  и потребляемая мощность. Как правило, составляет десятые доли - десятки миллиампер, а потребляемая мощность, однозначно определяемая , единицы - десятки милливатт.

                К максимально допустимым параметрам ОУ относятся:

                ¨ максимально возможное (неискаженное) выходное напряжение сигнала (обычно чуть меньше Е);

                ¨ максимально допустимая мощность рассеивания;

                ¨ рабочий диапазон температур;

                ¨ максимальное напряжение питания;

                ¨ максимальное входное дифференциальное напряжение и др.

                К частотным параметрам относится абсолютная граничная частота или частота единичного усиления  (), т.е. частота, на которой . Иногда используется понятие скорости нарастания и времени установления выходного напряжения, определяемые по реакции ОУ на воздействие скачка напряжения на его входе. Для некоторых ОУ приводятся также дополнительные параметры, отражающие специфическую область их применения.

                Амплитудные (передаточные) характеристики ОУ представлены на рисунке 6.5 в виде двух зависимостей  для инвертирующего и неинвертирующего входов.

Когда на обоих входах ОУ , то на выходе будет присутствовать напряжение ошибки , определяемое точностными параметрами ОУ (на рисунке 6.5  не показано ввиду его малости).

Описание: рис6-5

                Частотные свойства ОУ представляются его АЧХ, выполненной в логарифмическом масштабе, . Такая АЧХ называется логарифмической (ЛАЧХ), ее типовой вид приведен на рисунке 6.6 (для ОУ К140УД10).

Описание: рис6-6

                Частотную зависимость  можно представить в виде:

.

Здесь  постоянная времени ОУ, которая при  определяет частоту сопряжения (среза) ОУ (см. рисунок 6.6); .

                Заменив в выражении для    на , получим запись ЛАЧХ:

.

На НЧ и СЧ , т.е. ЛАЧХ представляет собой прямую, параллельную оси частот. С некоторым приближением можем считать, что в области ВЧ спад  происходит со скоростью 20дБ на декаду(6дБ на октаву). Тогда при w>> можно упростить выражение для ЛАЧХ:

.

                Таким образом, ЛАЧХ в области ВЧ представляется прямой линией с наклоном к оси частот 20дБ/дек. Точка пересечения рассмотренных прямых, представляющих ЛАЧХ, соответствует частоте сопряжения  (). Разница между реальной ЛАЧХ и идеальной на частоте составляет порядка 3дБ (см. рисунок 6.6), однако для удобства анализа с этим мирятся, и такие графики принято называть диаграммами Боде.

                Следует заметить, что скорость спада ЛАЧХ 20дБ/дек характерна для скорректированных ОУ с внешней или внутренней коррекцией, основные принципы которой будут рассмотрены ниже.

                Для скорректированного ОУ можно рассчитать  на любой частоте f как , а .

                На рисунке 6.6 представлена также логарифмическая ФЧХ (ЛФЧХ), представляющая собой зависимость фазового сдвига j выходного сигнала относительно входного от частоты. Реальная ЛФЧХ отличается от представленной не более чем на 6°. Отметим, что и для реального ОУ j=45° на частоте , а на частоте  - 90°. Таким образом, собственный фазовый сдвиг рабочего сигнала в скорректированном ОУ в области ВЧ может достигнуть 90°.

                Рассмотренные выше параметры и характеристики ОУ описывают его при отсутствии цепей ООС. Однако, как отмечалось, ОУ практически всегда используется с цепями ООС, которые существенно влияют на все его показатели.

                6.3. Инвертирующий усилитель

                Наиболее часто ОУ используется в инвертирующих и неинвертирующих усилителях. Упрощенная принципиальная схема инвертирующего усилителя на ОУ приведена на рисунке 6.7.

Описание: рис6-7

                Резистор  представляет собой внутреннее сопротивление источника сигнала , посредством  ОУ охвачен ||ООСН.

                При идеальном ОУ разность напряжений на входных зажимах стремиться к нулю, а поскольку неинвертирующий вход соединен с общей шиной через резистор , то потенциал в точке а тоже должен быть нулевым ("виртуальный нуль", "кажущаяся земля"). В результате можем записать: , т.е. . Отсюда получаем:

,

т.е. при идеальном ОУ  определяется отношением величин внешних резисторов и не зависит от самого ОУ.

                Для реального ОУ необходимо учитывать его входной ток , т.е.  или , где  - напряжение  сигнала на инвертирующем входе ОУ, т.е. в точке а. Тогда для реального ОУ получаем:

.

                Нетрудно показать, что при глубине ООС более 10, т.е. , погрешность расчета  для случая идеального ОУ не превышает 10%, что вполне достаточно для большинства практических случаев.

                Номиналы резисторов в устройствах на ОУ не должны превышать единиц мегом, в противном случае возможна нестабильная работа усилителя из-за токов утечки, входных токов ОУ и т.п. Если в результате расчета величина  превысит предельное рекомендуемое значение, то целесообразно использовать Т-образную цепочку ООС, которая при умеренных номиналах резисторов позволяет выполнить функцию эквивалента высокоомного  (рисунок 6.7б) . В этом случае можно записать:

.

На практике часто полагают, что , а величина  обычно задана, поэтому  определяется достаточно просто.

                Входное сопротивление инвертирующего усилителя на ОУ имеет относительно небольшое значение, определяемое параллельной ООС:

,

т.е. при больших  входное сопротивление определяется величиной .

                Выходное сопротивление инвертирующего усилителя в реальном ОУ отлично от нуля и определяется как величиной , так и глубиной ООС F. При F>10 можно записать:

.

                С помощью ЛАЧХ ОУ можно представить частотный диапазон инвертирующего усилителя (см. рисунок 6.6), причем

.

В пределе можно получить , т.е. получить инвертирующий повторитель. В этом случае получаем минимальное выходное сопротивление усилителя на ОУ:

.

                В усилителе на реальном ОУ на выходе усилителя при  всегда будет присутствовать напряжение ошибки , порождаемое  и . С целью снижения  стремятся выровнять эквиваленты резисторов, подключенных к входам ОУ, т.е. взять  (см. рисунок 6.7а). При выполнении этого условия для  можно записать:

.

                Уменьшение  возможно путем подачи дополнительного смещения на неинвертирующий вход (с помощью дополнительного делителя) и уменьшения номиналов применяемых резисторов.

                На основе рассмотренного инвертирующего УПТ возможно создание усилителя переменного тока путем включения на вход и выход разделительных конденсаторов, номиналы которых определяются исходя из заданного коэффициента частотных искажений  (см. подраздел 2.5).

                6.4. Неинвертирующий усилитель

                Упрощенная принципиальная схема неинвертирующего усилителя на ОУ приведена на рисунке 6.8.

Описание: рис6-8

Нетрудно показать, что в неинвертирующем усилителе ОУ охвачен ПООСН. Поскольку  и  подаются на разные входы, то для идеального ОУ можно записать:

,

откуда коэффициент усиления по напряжению неинвертирующего усилителя:

,

или

.

Для неинвертирующего усилителя на реальном ОУ полученные выражения справедливы при глубине ООС F>10.

Входное сопротивление неинвертирующего усилителя велико и определяется глубокой последовательной ООС и высоким значением :

.

Выходное сопротивление неинвертирующего усилителя на ОУ определяется как для инвертирующего, т.к. в обоих случаях действует ООС по напряжению:

.

                Расширение полосы рабочих частот в неинвертирующем усилителе достигается также, как и в инвертирующем, т.е.

.

                Для снижения токовой ошибки в неинвертирующем усилителе, аналогично инвертирующему, следует выполнить условие:

.

Неинвертирующий усилитель часто используют при больших  (что возможно за счет большого ), поэтому выполнение этого условия не всегда возможно из-за ограничения на величину номиналов резисторов.

Наличие на инвертирующем входе синфазного сигнала (передаваемого по цепи: неинвертирующий вход ОУ  выход ОУ    инвертирующий вход ОУ) приводит к увеличению , что является недостатком рассматриваемого усилителя.

При увеличении глубины ООС возможно достижение , т.е. получение неинвертирующего повторителя, схема которого приведена на рисунке 6.9.

Описание: рис6-9

Здесь достигнута 100%  ПООСН, поэтому данный повторитель имеет максимально большое входное и минимальное выходное сопротивления и используется, как и любой повторитель, в качестве согласующего каскада. Для неинвертирующего повторителя можно записать:

,

т.е. напряжение ошибки может достигать довольно большой величины.

                               На основе рассмотренного неинвертирующего УПТ также возможно создание усилителя переменного тока путем включения на вход и выход разделительных конденсаторов, номиналы которых определяются исходя из заданного коэффициента частотных искажений  (см. подраздел 2.5).

                Помимо инвертирующего и неинвертирующего усилителей на основе ОУ выполняются различные варианты УУ, некоторые из них будут рассмотрены ниже.

                6.5. Разновидности УУ на ОУ

                На основе ОУ может быть выполнен разностный (дифференциальный) усилитель, схема которого приведена на рисунке 6.10.

Описание: рис6-10

                Разностный усилитель на ОУ можно рассматривать как совокупность инвертирующего и неинвертирующего вариантов усилителя. Для  разностного усилителя можно записать:

.

Как правило,  и , следовательно, . Раскрыв значения коэффициентов усиления, получим:

,

Для частного случая при   получим:

.

Последнее выражение четко разъясняет происхождение названия и назначение рассматриваемого усилителя.

                В разностном усилителе на ОУ при одинаковой полярности входных напряжений имеет место синфазный сигнал, который увеличивает ошибку усилителя. Поэтому в разностном усилителе желательно использовать ОУ с большим КОСС. К недостаткам рассмотренного разностного усилителя можно отнести разную величину входных сопротивлений и трудность в регулировании коэффициента усиления. Эти трудности устраняются в устройствах на нескольких ОУ, например, в разностном усилителе на двух повторителях (рисунок 6.11).

Описание: рис6-11

Данная схема симметрична и характеризуется одинаковыми входными сопротивлениями и малым напряжением ошибки, но работает только на симметричную нагрузку.

                На основе ОУ может быть выполнен логарифмический усилитель, принципиальная схема которого приведена на рисунке 6.12.

Описание: рис6-12

                P-n переход диода VD смещен в прямом направлении. Полагая ОУ идеальным, можно приравнять токи  и .Используя выражение для ВАХ p-n перехода , нетрудно записать:

,

откуда после преобразований получим:

,

из чего следует, что выходное напряжение пропорционально логарифму входного, а член  представляет собой ошибку логарифмирования. Следует заметить, что в данном выражении используются напряжения, нормированные относительно одного вольта.

                При замене местами диода VD и резистора R получается антилогарифмический усилитель.

                Широкое распространение получили инвертирующие и неинвертирующие сумматоры на ОУ, называемые еще суммирующими усилителями или аналоговыми сумматорами. На рисунке 6.13 приведена принципиальная схема инвертирующего сумматора с тремя входами. Это устройство является разновидностью инвертирующего усилителя, многие свойства которого проявляются и в инвертирующем сумматоре.

Описание: рис6-13

                При использовании идеального ОУ можно считать, что входных токов усилителя, вызванных входными напряжениями ,  и , равна току, протекающему по , т.е.

,

откуда

.

Из полученного выражения следует, что выходное напряжение устройства представляет собой сумму входных напряжений, умноженную на коэффициент усиления . При    и .

                При выполнении условия  токовая ошибка мала, и ее можно рассчитать по формуле , где  - коэффициент усиления сигнала ошибки, который имеет большее значение, чем .

                Неинвертирующий сумматор реализуется также как и инвертирующий сумматор, но для него следует использовать неинвертирующий вход ОУ по аналогии с неинвертирующим усилителем.

                При замене резистора  конденсатором С (рисунок 6.14) получаем устройство, называемое аналоговым интегратором или просто интегратором.

Описание: рис6-14

При идеальном ОУ можно приравнять токи   и , откуда следует:

,

или

.

Точность интегрирования тем выше, тем больше.

                Кроме рассмотренных УУ, ОУ находят применение в целом ряде устройств непрерывного действия, которые будут рассмотрены ниже.

                6.6. Коррекция частотных характеристик

                Под коррекцией частотных характеристик будем понимать изменение ЛАЧХ и ЛФЧХ для получения от устройств на ОУ необходимых свойств и, прежде всего, обеспечение устойчивой работы. ОУ обычно используется с цепями ООС, однако при некоторых условиях, из-за дополнительных фазовых сдвигов частотных составляющих сигнала, ООС может превратится в ПОС и усилитель потеряет устойчивость. Поскольку ООС очень глубокая(), то особенно важно обеспечить фазовый сдвиг между входным и выходным сигналом, гарантирующий отсутствие возбуждения.

                Ранее на рисунке 6.6 были приведены ЛАЧХ и ЛФЧХ для скорректированного ОУ, по форме эквивалентные ЛАЧХ и ЛФЧХ одиночного усилительного каскада, из которых видно, что максимальный фазовый сдвиг j<90° при , а скорость спада коэффициента усиления в области ВЧ составляет 20дБ/дек. Такой усилитель устойчив при любой глубине ООС.

Описание: рис6-15

                Если ОУ состоит из нескольких каскадов (например, трех),  каждый из которых имеет скорость спада 20дБ/дек и не содержит цепей коррекции, то его ЛАЧХ и ЛФЧХ имеют более сложную форму  (рисунок 6.15) и содержит область неустойчивых колебаний.

                Для обеспечения устойчивой работы устройств на ОУ используются внутренние и внешние цепи коррекции, с помощью которых добиваются общего фазового сдвига при разомкнутой цепи ООС менее 135° на максимальной рабочей частоте. При этом автоматически получается, что спад  составляет порядка 20дБ/дек.

                В качестве критерия устойчивости устройств на ОУ удобно использовать критерий Боде, формулируемый следующим образом: "Усилитель с цепью обратной связи устойчив, если прямая его коэффициента усиления в децибелах пересекает ЛАЧХ на участке со спадом 20дБ/дек". Таким образом, можно заключить, что цепи частотной коррекции в ОУ должны обеспечивать скорость спада () на ВЧ порядка 20дБ/дек.

                Цепи частотной коррекции могут быть как встроенные в полупроводниковый кристалл, так и созданными внешними элементами. Простейшая цепь частотной коррекции осуществляется с помощью подключения к выходу ОУ конденсатора  достаточно большого номинала. Необходимо, чтобы постоянная времени  была больше, чем . При этом сигналы высоких частот на выходе ОУ будут шунтироваться  и полоса рабочих частот сузится, большей часть весьма значительно, что является существенным недостатком данного вида коррекции. Полученная в этом случае ЛАЧХ показана на рисунке 6.16.

Описание: рис6-16

                Спад  здесь не будет превышать 20дБ/дек, а сам ОУ будет устойчив при введении ООС, поскольку j никогда не превысит 135°.

Вам также может быть полезна лекция "23 Договор финансирования под уступку денежного требования".

                Более совершенны корректирующие цепи интегрирующего (запаздывающая коррекция) и дифференцирующего (опережающая коррекция) типов. В общем виде коррекция интегрирующего типа проявляется аналогично действию корректирующей (нагрузочной) емкости. Корректирующая RC цепь включается между каскадами ОУ (рисунок 6.17).

Описание: рис6-17

Резистор  является входным сопротивлением каскада ОУ, а сама цепь коррекции содержит  и . Постоянная времени этой цепи должна быть больше постоянной времени любого из каскадов ОУ. Поскольку цепь коррекции является простейшей однозвенной RC цепью, то наклон ее ЛАЧХ равен 20дБ/дек, что и гарантирует устойчивую работу усилителя. И в этом случае цепь коррекции сужает полосу рабочих частот усилителя, однако широкая полоса все равно ничего не дает, если усилитель неустойчив.

                Устойчивая работа ОУ при относительно широкой полосе обеспечивается коррекцией дифференцирующего типа. Сущность такого способа коррекции ЛАЧХ и ЛФЧХ заключается в том, что ВЧ сигналы проходят внутри ОУ в обход части каскадов (или элементов), обеспечивающих максимальный , ими не усиливаются и не задерживаются по фазе. В результате ВЧ сигналы будут усиливаться меньше, но их малый фазовый сдвиг не приведет к потере устойчивости усилителя. Для реализации коррекции дифференцирующего типа к специальным выводам ОУ подключается корректирующий конденсатор (рисунок 6.18).

Описание: рис6-18

                Помимо рассмотренных корректирующих цепей известны и другие (см., например [2]). При выборе схем коррекции и номиналов их элементов следует обращаться к справочной литературе (например,[10]).

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5183
Авторов
на СтудИзбе
435
Средний доход
с одного платного файла
Обучение Подробнее