Популярные услуги

Курсовой проект по деталям машин под ключ
КМ-4. Типовое задание к теме косвенные измерения. Контрольная работа - любой вариант за 5 суток.
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Курсовой проект по деталям машин под ключ в бауманке
ДЗ по ТММ в бауманке
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
КМ-3. Задание по Matlab/Scilab. Контрольная работа - любой вариант за 3 суток!
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
ДЗ по матведу любого варианта за 7 суток
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
Главная » Лекции » Инженерия » Преобразовательная техника » Схемы импульсных преобразователей

Схемы импульсных преобразователей

2021-03-09СтудИзба

Схемы импульсных преобразователей

Классификация схем. Существует множество схем импульсных пре­образователей постоянного тока. Это многообразие, главным обра­зом, связано с использованием различных схемных способов прину­дительного конденсаторного выключения однооперационных тирис­торов, составляющих основу полупроводникового ключа.

Схемы классифицируются по следующим признакам: способу за­пирания тиристоров (обратным напряжением, обратным током), виду коммутации (одноступенчатая, двухступенчатая), схеме включения коммутирующей ЭДС (параллельная, последовательная), структуре цепей заряда и разряда коммутирующего конденсатора (зависимая, независимая).

Схемы с одноступенчатой коммутацией. В простейших схемах с одноступенчатой коммутацией для запирания тиристоров использу­ются постоянно включенные колебательные цепи (рис. 8.8).

При включении тиристора VT в LкCк-контуре возникает колеба­тельный процесс. Через некоторое время ток в тиристоре "вытесняет­ся" встречным током колебательного контура и становится равным нулю. Тиристор запирается обратным напряжением от коммутирующего конденсатора. Для изменения среднего значения напряжения на нагрузке в этих схемах может быть применен лишь частотно-импульсный способ, что заметно ограничивает регулировочные свойства и  энергетические показатели преобразователя. Поэтому в подавляющем большинстве случаев в современных тиристорных импульсных преобразователях используются схемы с двухступенчатой коммутацией.

Схемы с двухступенчатой коммутацией (рис. 8.9). В таких схемах коммутирующие цепи присоединяются к цепи силового (главного тиристора с помощью вспомогательных (коммутирующих) тиристоров в определенные моменты времени, и ток главного тиристора на короткий интервал времени проходит через коммутирующий тирис­тор. При этом запирание главного тиристора может осуществляться обратным напряжением (жесткая коммутация) или импульсом обрат­ного тока (мягкая коммутация).

Рис. 8.9. Базовые схемы тиристорных импульсных преобразователей с коммутацией импульсом обратного тока (а, в, д) и приложением обратного напряжения (б, г, е).

Рекомендуемые материалы

Многоквадрантный режим импульсного преобразователя. Рассмот­ренные выше схемы включения ИР соответствуют только одноква­дрантному режиму преобразования энергии, так как полярность напряжения и2 и направление тока i2 цепи нагрузки для каждой из схем неизменны.

Рассмотрим возможность реализации в схемах с ИР многоква­дрантных режимов преобразования энергии в цепях постоянного тока (рис. 8.12).

  В схемах (рис. 8.12, а,б) показаны направления потоков энергии Р. Возможные области режимов работы в координатах U2, I2 показа­ны заштрихованными областями для соответствующего квадранта. Эти схемы можно включить совместно в такой комбинации, которая обеспечивает многоквадрантный режим работы.

На рис. 8.12, в и г приведены схемы для двухквадрантного режима работы. Схема (см. рис. 8.12, в) предусматривает изменение направле­ния тока I2, а схема (рис. 8.12, г) — напряжения U2. В обоих случаях достигается изменение направления потока Р. В схеме с изменением направления тока I2 предусматривается специальный коммутирую­щий дроссель Lк с выведенной средней точкой для разделения выклю­чаемого тиристора от встречно включенного диода. Этот дроссель снижает ответвление коммутирующего тока в цепь данного диода.

Схема (рис. 8.12, д) позволяет реализовать четырехквадрантный режим импульсного преобразователя. Поскольку напряжение U2 как и ток I2 на стороне нагрузки могут изменять направление на обрат­ное, достигается работа преобразователя во всем пространстве состояний. Эта схема представляет собой преобразователь постоянно-переменного тока, т.е. мостовую схему однофазного инвертора, обеспечи­вающую передачу энергии из цепи постоянного тока в цепь переменного тока и обратную передачу энергии.

9. АВТОНОМНЫЕ ИНВЕРТОРЫ

 9.1. НАЗНАЧЕНИЕ И ВИДЫ АВТОНОМНЫХ ИНВЕРТОРОВ

Автономные инверторы - это преобразователи постоянного тока в переменный однофазный или многофазный ток. Коммутация тока в них осуществляется независимо от процессов во внешних элект­рических цепях благодаря наличию дополнительных коммутирующих устройств внутри самого преобразователя. На его выходе можно по­лучать переменный ток теоретически любой частоты, плавно регули­ровать от нуля до максимального значения частоту и напряжение. Благодаря этому свойству автономные инверторы находят все более широкое применение в регулируемых электроприводах с асинхронными двигателями трехфазного тока. Особенно перспективно применение автономных инверторов в тяговых электроприводах электрово­зов, электропоездов, тепловозов.

В зависимости от способа принудительной коммутации тока, схемы инвертора, параметров источника питания и нагрузки автономные инверторы делятся на виды, отличающиеся специфическими осо­бенностями процессов переключений тока. Полная коммутация с переключением тока с одной ветви схемы на другую в автономных инверторах происходит на нескольких этапах, важнейшими из которых являются: уменьшение прямого тока в одном из тиристоров до нуля, задержка приложения прямого напряжения на этом тиристоре до полного восстановления   его запирающей способности, нарастание прямого тока во втором тиристоре. Эти события могут совершаться совместно или последовательно. Средства для осуществления надеж­ной коммутации обычно являются одной из наиболее трудных про­блем в автономных инверторах. Принципиально эти средства можно разделить на два класса.

К первому классу следует отнести полностью управляемые силовые полупроводниковые приборы (силовые транзисторы и запираемые тиристоры).

 Второй класс составляют обычные не полностью управляемые СПП (однооперационные тиристоры), дополненные специальными узлами принудительной коммутации, например, в виде предварительно заряженных конденсаторов и вспомогательных тиристоров.

Рассмотрим принцип работы автономного инвертора на примере простейшей однофазной схемы с использованием указанных выше

средств коммутации (рис. 91).

Принцип работы инвертора на полностью управляемых приборах.

Силовые транзисторы используются как ключи, получая сигналы управления СУ по цепи базы от отдельной схемы управления СУ, построенной на основе генератора прямоугольных импульсов. Сигналы управления, поступающие на транзисторы VT1 и VT2, не совпадают по времени, что устраняет появление сквозного тока источника питания Е. Предполагается, что один транзистор открывается в тот момент, когда другой закрывается. В схеме не требуется дополнительных ком­мутирующих устройств, так как транзисторы обладают свойством полной управляемости, и для включения и выключения достаточно управлять током их базовых цепей.

Рис 9. 1. Схемы и временные диаграммы работы однофазного автономного инвертора  на транзисторах при работе на активную нагрузку (без обратных диодов) (с) и  на  активно-индуктивную нагрузку (с обратными диодами) (б)

Сигналы управления подаются на VT1, VT2 с периодом следования Т. При активной нагрузке (см. рис. 9.1, а) поочередное включение транзисторов обуславливает приложение ЭДС источника Е к первичной обмотке трансформатора Т, выполненного с выведенной средней (нулевой) точкой 0.  По первичным полуобмоткам протекают токи i11, i12. На вторичной обмотке возникает напряжение и2 прямоугольной формы. Ток i2 при активной нагрузке R повторяет форму кривой и2 и переходит через нулевое значение одновременно с моментом переключения транзисторов. При работе транзисторов в нулевой схеме в течение непроводящей части периода к ним прикладывается в прямом направлении напряжение 2Е.

В реальных схемах нагрузка носит, как правило, активно-индуктивный характер (см. рис. 9.1, б). Во время переключения транзисторов в такой схеме возникают условия, которые могут привести к большим перенапряжениям, поскольку ток в цепи с индуктивным элементом не может мгновенно изменить направление. Следовательно, для предупреждения перенапряжения в схеме должна быть пред­усмотрена ветвь тока нагрузки на интервалах t0t1, t2 t3  после переключения транзистора.

Для пропуска тока могут быть включены разнообразные устройства, например резисторы, конденсаторы или дополнительные цепи с полупроводниковыми приборами. Наиболее экономичное решение было предложено выполнять по схеме с обратными диодами VD1, VD2, включенными встречно-параллельно основным (главным) транзисторам VT1, VT2 [4]. Для этого случая на рис. 9.1, б показаны формы напряжений и токов в схеме инвертора. В схеме с обратным диодами после переключения транзистора контур индуктивного тока нагрузки проходит через диод, включенный встречно ЭДС источника Е. Входной ток id инвертора на интервалах переключения тока (спадания тока нагрузки до нуля) протекает в обратном направлении, обеспечивая возврат в источник питания энергии, накопленной в дросселе L. Среднее значение тока Id источника определяется потреблением энергии активным сопротивлением R цепи нагрузки. При идеальной индуктивной нагрузке теоретически возможно Id = 0.

Принцип работы инвертора на однооперационных тиристорах. Рас­смотрим схему инвертора, в которой требуются дополнительные эле­менты для осуществления коммутации. Схема однофазного инвертора на однооперационных тиристорах VT1, VT2 (рис. 9.2) называется параллельным инвертором [4] и строится по принципу коммутации тока с использованием конденсатора С, включенного параллельно цепи нагрузки.

Широко известная схема однофазного параллельного инвертора отличается от схемы (см. рис. 9.1) наличием дросселя в цепи постоянного тока с индуктивностью Ld и коммутирующего конденсатора емкостью С. В этой схеме принудительное выключение однооперационных тиристоров VTI, VT2 осуществляется предварительно заряжен­ным коммутирующим конденсатором. Коммутация тиристора VT1 начинается с момента (t2, t6), когда отпирается второй тиристор VT2, и конденсатор С, заряженный так, что верхняя обкладка положитель­на, обеспечивает обратное напряжение на запираемом тиристоре VT1.

Интервалы времени (t2t3, t6 - t7 для  VT1; t0 - t1,t4 —t5 для VT2) должны быть не менее времени выключения тиристора. Для

выполнения этого условия необходимо включить конденсатор такой емкости С, чтобы отводить  ток нагрузки от тиристора на интервале времени выключения.

Дроссель L цепи постоянного тока такого инвертора обычно имеет достаточно большую индуктивность, чтобы исключить или су­щественно уменьшить пульсации подводимого постоянного тока id. При этом ток id переключения с одного тиристора на другой равнозначен току прямоугольной формы через тиристоры VT1 и VT2. Ток i2 цепи RL-нагрузки имеет плавное изменение, и разность токов ти­ристора (источника) и нагрузки компенсируется током конденсатора ic. Их алгебраическая сумма на каждом временном интервале равна нулю. Конденсатор заряжается на интервале, когда ток тиристора превышает ток нагрузки (приведенный к числу витков первичной обмотай трансформатора), и разряжается, если ток нагрузки превышает ток источника. В  результате конденсатор перезаряжается дваж­ды за один период Т.  Напряжение конденсатора ис накладывается на ЭДС источника Е,  и на выходе инвертора напряжение ии содержит постоянную составляющую Е и переменную составляющую, опреде­ляемую напряжением на  конденсаторе ис (см. рис. 9.2). Напряжение на входе ии имеет значительые пульсации, возрастающие с уменьшени­ем емкости С при неизменных параметрах  RL-нагрузки.

Расчет параллельного инвертора довольно сложен. Основные принципы которые позволяют выполнить расчет, сводятся к следую­щему:

мощность получаемая от  источника постоянного тока, должна

быть равна мощности, отдаваемой нагрузке: EId = U22/R, где U2

Рекомендуем посмотреть лекцию "1 Предмет, метод, структура юридической деонтологии как науки и учебной дисциплины".

эффективное значение    напряжения нагрузки;

так как кривые напряжений и токов несинусоидальны и со­держат ряд гармонических составляющих, то реактивные мощности основной и каждой высшей гармонической составляющей тока источника питания должны быть  равны соответствующим состав­ляющим реактивной  мощности всей цепи переменного тока на выходе;

в установившемся режиме среднее за интервал проводящего состояния каждого тиристора напряжение на полуобмотке первичной  обмотки трансформатора должно быть равно напряжению источника питания Е.

Принцип работы инверторов на однооперационных тиристорах с последовательным конденсатором в нагрузке. Последовательная RC­-цепь нагрузки образует резонансный контур, обеспечивающий ком­мутацию. Такие инверторы получили название последовательных (рис. 9.3) [4].

Когда тиристор VT1 открыт, а тиристор VT2 закрыт, после­довательная резонансная цепь подсоединена к источнику постоян­ного тока. За время первого полупериода резонансного колебания (t0 —t2 ) напряжение на конденсаторе иc возрастает до значения, близкого 2Е. Затем ток id уменьшается ниже тока удержания тиристора и прекращается. Второй тиристор VT2 можно включить, спустя интервал (t2 — t3) длительностью не менее времени вы­ключения тиристора. Когда тиристор VT2 включается, происходит такой же колебательный процесс перезаряда конденсатора через цепь нагрузки. При этом источник питания не участвует в работе. Конденсатор перезаряжается током исходной полярности. Далее с интервалом (t5 — t6) открывается тиристор VT1, и процессы в схеме повторяются. Если интервалы t2 — t3 и t5t6 поддерживать минимальными, то ток i в цепи нагрузки близок к синусоидальной форме. Для устойчивой коммутации тиристоров эти временные интервалы должны быть достаточными для гарантированного выключения тиристоров.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее