Популярные услуги

Очистка доменного газа

2021-03-09СтудИзба

Лекция №5

Очистка доменного газа

Содержание

Введение                                                                                                                                   2

1. Характеристика колошниковых газов                                                                               3

2. Вредные выбросы доменного производства                                                                           5

3 Очистка газов в доменном цехе                                                                                           6

4.. Грубая газоочистка                                                                                                              7

5. Полутонкая очистка                                                                                                             9

Рекомендуемые материалы

6. Тонкая очистка

7. Очистка газа в трубах распылителях-дроссельная группа                                               10

Список рекомендуемой литературы                                                                                    15

ВВЕДЕНИЕ

Помимо санитарной очистки газовых выбросов перед выпуском их в атмосферу, в доменном производстве первостепенную роль играет очистка технологическая. Применение доменного газа в металлургической промышленности связано с началом нагрева дутья в доменном производстве. Особенно большое развитие оно получило после установки на доменных печах засыпных аппаратов и перехода в связи с этим к более широкому использованию газа как топлива. Состав и основные характеристики доменного газа зависят от шихты и хода плавки и могут в значительной степени изменяться. Доменный газ загрязнен колошниковой пылью, которая представляет смесь мелких частиц руды, кокса, агломерата, известняка и других материалов, загружаемых в доменную печь. Во избежание засорения горелочных устройств и образования отложений в газопроводах доменный газ предварительно должен быть очищен от пыли. Пыль образуется в результате механического измельчения материалов при их приготовлении, транспортировке, загрузке и истирании при движении в шахте печи. Вынос пыли из печи обусловлен увлечением мелких частиц потоком газа, проходящим сквозь слой шихты, а также возгонкой некоторых элементов шихты, т.е. превращением их в парообразное состояние под действием высоких температур. Количество пыли в газе изменяется в зависимости от степени подготовки сырья к плавке, прочности кокса и ровности хода печи.

Состав доменного газа изменяется в следующих пределах, % (объемн.): 25-30 СО; 12-18 СО2; 2-7 Н2; до 0,5 СН4; 47-57 N2.

При несовершенных условиях плавки количество пыли в газе может достигать 100 г/м3 газа, находясь при выплавке передельного чугуна в среднем 50 – 60, а при хорошем фракционном составе шихты 30 – 35 г/м3. Содержание пыли в газе резко сокращается при работе печей на режиме повышенного давления газа на колошнике.

По количеству пыли, остающейся в газе после его очистки, последняя классифицируется на грубую, полутонкую и тонкую. По способу очистки газа газоочистительные средства разделяют на сухие и мокрые. Грубая очистка производится сухим способом. Она основана на изменении скорости и направления движения газа. Назначением грубой очистки является первичное отделение пыли в улавливающей аппаратуре, располагаемой непосредственно около доменных печей.

Полутонкую очистку осуществляют мокрым способом, т.е. обильным увлажнением газа, после которого смоченные частицы пыли удаляются вместе с водой из газовой среды в виде шлама.

Тонкая очистка является конечной стадией очистки газа и требует обязательной предварительной подготовки для получения надлежащего эффекта. Тонкая очистка осуществляется фильтрацией газа через тканевые фильтры или наэлектризованием частиц пыли и притягиванием их проводниками электрического тока в электрических аппаратах или устройствах, работающих по принципу тесного перемешивания газа с водой, а также путем создания больших перепадов давлений газа при прохождении его через соответствующую. Доменный или колошниковый газ используют как топливо воз­духонагревателей доменных печей, коксовых печей, нагреватель­ных колодцев и печей прокатных станов, котельных установок. На выходе из печи доменный газ содержит от 10 до 40 г/м3 пыли, а перед подачей в горелочные устройства для предотвращения выхода их из строя (засорение и др.) содержание пыли в нем должно быть не более 5 мг/м3, в связи с чем требуется обязательная его очистка.

1. Характеристика колошниковых газов

Колошниковый или доменный газ представляет конеч­ный газообразный продукт физико-химических процессов, протекаю­щих в доменной печи, упрощенная схема образования которого может быть представлена следующим образом. При контакте горячего дутья с раскаленным коксом окислители, содержащиеся в дутье — кислород и водяные пары, интенсивно реагируют с углеродом кокса и топливных добавок. За счет избытка кокса в сложившихся температурных усло­виях горна продуктом этих процессов являются оксид углерода, азот и водород. При работе с дутьем, обогащенным кислородом, состав пер­вичного газа зависит от концентрации кислорода. Так, при увеличении концентрации кислорода от 21 до 30 % и использовании природного газа содержание оксида углерода в горновом газе возрастает от 36 до 40 %, а содержание азота падает от 64 до 50 %. Причем состав первичного газа зависит от соотношения расходов кислорода и природного газа. В ре­зультате последующих реакций косвенного и прямого восстановления первичный газ существенно изменяется за счет обогащения оксидом углерода, углекислотой и водяными парами. Конечный состав и темпе­ратура колошникового газа изменяются в широких пределах в зависи­мости от конкретных технологических условий.

Выходящий из слоя шихтовых материалов колошниковый газ захватывает из поверхностных слоев мелкие, преимущественно меньше 1 мм, частицы кокса и железосодержащих материалов. Содержание мелких частиц - пыли в колошниковом газе на выходе из печи достигает 15-30 г/м3, а иногда и более.

Удельный выход колошникового газа, т.е. объема газа на 1 т чугуна, зависит от многих факторов и прежде всего от расхода кокса и содержа­ния кислорода в дутье. Уменьшение расхода кокса на выплавку чугуна сопровождается пропорциональным уменьшением удельного выхода колошникового газа в связи с тем, что выход газа на 1 т кокса при про­чих равных условиях остается практически неизменным и составляет около 3750 м3. Аналогичным образом влияет и увеличение концентра­ции кислорода в дутье. Так, по данным Е.А. Ницкевича, повышение содержания кислорода в дутье на 1 % приводит к уменьшению удельно­го выхода газа на 3 %. Влияние природного газа или других топливных добавок на выход колошникового газа также прежде всего проявляется через изменение расхода кокса. Чем выше коэффициент замены кокса добавками, тем сильнее сокращается выход колошникового газа.

Химический состав и теплота сгорания колошникового газа зависят от тех же факторов, что и его выход. Повышение качества подготовки железосодержащих материалов, увеличение доли агломерата и окаты­шей, рост температуры дутья и увеличение расхода природного газа при­водят к развитию косвенного восстановления и способствуют резкому снижению теплотворной способности колошникового газа. В современ­ных доменных печах, работающих с расходом кокса 420—500 кг/т чугу­на, теплотворная способность не превышает 3000—3400 кДж/м3.

Измельчение шихтовых материалов происходит при приготовлении, транспор­тировке и загрузке их в печь. Термические процессы и механическое истирание материалов в печи приводят к образованию новых количеств мелких частиц. Сле­дует отметить, что неровный ход усиливает разрушение шихтовых материалов.

Захват частиц материалов потоком газа при его выходе из слоя происходит, когда подъемная сила, действующая на площадь поперечного сечения частицы, бу­дет больше ее массовых сил. Подъемная сила в основном определяется скоростью газа при обтекании частицы и ее формой. Гранулометрический состав пыли зависит от многих факторов и может сильно меняться в зависимости от условий работы печ

Основные параметры доменного газа. Состав и основные характеристики доменного газа зависят от состава шихты и хода плавки и могут в значительной степени изменяться.

Для интенсификации доменного процесса и сокращения расхода кокса существует много различных мероприятий, влияющих и на свойства доменного газа: повышение давления, температуры и влажности доменного дутья, обогащение дутья кислородом, вдувание в горн природного газа, мазута и т. п. в результате совокупного действия этих факторов, оказывающих в некоторых случаях противоположное влияние, в составе доменного газа повышается содержание водорода с одновременным уменьшением СО, вследствие чего теплота сгорания его изменяется мало и составляет около 3500–4000 кДж/м3, а выход доменного газа снижается с 3800-4000 до 2000-2500 м3/т чугуна.

Примерный состав доменного газа приведен ниже:

Компоненты……….

При работе без повышения давления и комбинированного дутья, %…………..

При работе с повышением давления и комбинированным дутьем, %..................

СО2

11,2

11,3

СО

31,2

29,0

СН4

0,21

0,20

Н2

2,99

4,30

О2+N2

55,1

55,2

Температура газа, поступающего на газоочистку при работе печей на повышенном давлении, составляет 200–300°С. Наблюдаются кратковременные повышения температуры до 500°С. При выплавке спецчугунов (литейного, ферросилиция, ферромарганца) температура газа выше, чем при выплавке передельного чугуна, и составляет 300 – 400°С.

Колошниковая пыль, ее вынос и свойства. Доменный газ, образующийся в печи, всегда загрязнен колошниковой пылью, которая представляет собой смесь мелких частиц руды, кокса, агломерата, известняка и других материалов, загружаемых в доменную печь. Пыль образуется в результате механического измельчения материалов при их приготовлении, транспортировании, загрузке и истирании при движении в шахте печи.

Вынос пыли из печи обусловлен увеличением мелких частиц потоком газа, проходящим сквозь слой шихты, а также возгонкой некоторых элементов шихты в область высоких температур и подмешиванием их к газу.

При работе печей с нормальным давлением на колошнике вынос пыли составлял 50 – 60 г/м3, повышаясь в отдельных случаях до 100 г/м3. при переводе печей на работу с повышенным давлением на колошнике запыленность доменного газа уменьшается до 15 -20 г/м3, что в значительной мере объясняется снижением удельных объемов и скоростей газов в печи.

Удельный выход пыли на 1 т чугуна составляет при нормальном давлении на колошнике 50 – 150, при повышенном давлении 25 – 75 кг/т.

При выплавке передельного чугуна и работе с повышенным давлении на колошнике пыль имеет следующий химический состав, %: 6,02FeO; 12,9Fe2O3; 13,8Feобщ; 14,6SiO2; 4,35Al2O3; 4,35MgO; 11,85CaO; 0,74S; 3,75MnO. Потери при прокаливании составляют 27,68 %.

Гранулометрический состав пыли также зависит от многих факторов и может сильно колебаться. О примерном распределении частиц по размерам можно судить по следующим данным:

Размер частиц, мкм

200

200-100

100-60

60-20

20-10

10-1

<1

Массовое содержание, %

34,5

12,3

19,0

25,0

7,5

1,65

0,05

2. ВРЕДНЫЕ ВЫБРОСЫ ДОМЕННОГО ПРОИЗВОДСТВА И ИХ ОЧИСТКА

Доменные цеха загрязняют атмосферу в основном пылью и окисью углерода.

Рудный двор и бункерная эстакада. На рудном дворе пыль выделяется при разгрузке вагонов, перегрузке руды грейферными кранами, подачи руды на бункерную эстакаду. Удельный выброс пыли на 1 т чугуна ориентировочно принимают равным: на рудном дворе 50 кг, на бункерной эстакаде 22 кг при высоте выделений 6 -15 м. концентрация пыли на рудном дворе и бункерной эстакаде может достигать 1000 мг/м3. На новых металлургических заводах можно ожидать  снижения удельных выбросов до 10 кг/т за счет разгрузки и транспортирования сыпучих материалов в закрытых разгрузочных узлах и закрытых галереях с объединением аспирационных систем и очисткой запыленных газов в крупных электрофильтрах.

Подбункерные помещения. В доменных цехах существует две системы подачи сырых материалов на колошник: скиповая и транспортерная – значительно снижающая пылевыделение.

Наибольшее количество пыли выделяется в подбункерном помещении, где происходит выгрузка сырых материалов в вагон – весы и далее в скип. Пыль выбрасывается в атмосферу через окна и проемы для скипов и через выхлопные отверстия аспирационных систем при высоте выделений 10 м.

Концентрация пыли в воздухе подбункерных помещений составляет около 500 мг/м3, в связи с чем на многих заводах кабину машиниста вагон – весов приходится герметизировать. При транспортерной подаче сырых материалов условия работы в подбункерном помещении гораздо лучше.

Валовые выбросы в подбункерных помещениях, кг/т чугуна, для печей различных объемов Vп, м3, приведены ниже:

Скиповая подача (Vп<2000)……………0,8 – 1,2

Транспортерная подача (Vп>2000)…………0,09

Дисперсный состав пыли в подбункерном помещении приведен ниже:

Размер частиц, мкм……………..<13       13 – 52      >52

Содержание, % (объемн.)……......86         13                1

Для очистки выбросов аспирационных систем применяют в большинстве случаев мокрые пылеуловители.

Колошниковое устройство. Пыле- и газовыделение печи обусловлено тем, что при подаче шихты на большой конус загрузочного устройства печи давление по обе стороны конуса необходимо выровнять, для чего грязный газ из межконусного пространства выпускают в атмосферу. Кроме того, пылевыделение происходит при каждой ссыпке скипа в приемную воронку. Для печей емкостью 930 – 2700 м3 выбросы пыли и СО составляют 0,17 – 0,60 и 5 – 19 т/сутки, соответственно.

В редких случаях газ отводят на газоочистку с последующим использованием в качестве топлива.

Радикальным решением, почти полностью исключающим выбросы пыли из межконусного пространства, является подача в межконусное пространство в момент открытия большого конуса компремированного газа давлением, несколько превышающем давление в печи. В этом случае грязный газ из печи вообще не поступает в межконусное пространство и выхлоп газа при выравнивании давления в засыпном устройстве остается чистым. Однако при этом появляются дополнительные энергозатраты, связанные со сжатием газа, подаваемого в межконусное пространство.

 Литейный двор. На литейном дворе пыль и газы выделяются в основном от леток чугуна и шлака, желобов участков слива и ковшей. Удельные выходы вредных веществ на 1 т чугуна составляют: 400 – 700 г пыли, 0,7 – 0,15 кг СО, 120 – 170 SO2. пыль и газы удаляются частично через фонари здания, частично с помощью аспирационных систем с очисткой от пыли перед выбросом в атмосферу, преимущественно в батарейных циклонах.

При разливке чугуна в помещении разливочных машин выделяются пыль и окись углерода. Аспирация и очистка обычно не предусмотрены. Через аэрационные фонари выделяются в среднем 40 г пыли и 60 г СО на 1 т разлитого чугуна.

Все выбросы литейного двора крупных печей стремятся объединить и направлять их для очистки в электрофильтры. Общее количество отсасываемого газа у крупных печей достигает 1 млн. м3/ч. Чтобы его уменьшить все системы снабжают дроссельными клапанами (ДК), позволяющими по мере надобности включать дистанционно необходимое в данный момент укрытие (зонт).

Воздухонагреватели. Воздухонагреватели доменных печей загрязняют атмосферу преимущественно окисью углерода, в среднем 11 – 14 г/т чугуна. Концентрация окиси углерода, удаляемой через аэрационные проемы зданий, составляет в среднем 33 мг/м3.

Пылеуловители. При сухой разгрузке пылеуловителей в атмосферу выделяется 0,75 – 1,0 г пыли на 1 т чугуна. Средняя концентрация пыли при погрузке на открытые железнодорожные платформы составляет 250 мг/м3 на расстоянии 5 м от пылеуловителя при отсутствии ветра. При смачивании пылевыделение значительно сокращается. В настоящее время разработана закрытая система пневматического транспортирования уловленной пыли.

3.Очистка газов в доменном цехе.

Несмотря на существенное уменьшение выноса пыли в современных печах, потери железа по этой причине остаются достаточно большими. Кроме того, при транспортировке запыленного газа по трубопроводам происходит интенсивное эрозионное разрушение металла труб и горелочных устройств, поэтому газ подвергают многоступенчатой тонкой очистке. Многоступенчатая очистка позволяет получить требуемое содержание пыли при минимальных экономических и энергетических затратах. Уловленная пыль передается на аглофабрику и применяется как компо­нент шихты.

Для каждой доменной печи сооружают индивидуальную си­стему газоочистки; газ к газоочистным устройствам, располагае­мым на нулевой отметке, подают от колошника по наклонному газопроводу (на печи объемом 5000 м3 их два). Система газо­очистки обычно включает несколько последовательно установлен­ных газоочистных аппаратов. На современных отечественных пе­чах, работающих с повышенным давлением газов, применяют две различающиеся схемы газоочистки — с дроссельным устройством, предназначенным для понижения давления газов, и с газовой ути­лизационной бескомпрессорной турбиной.

Рис. 1. Схема расположения газопроводов и аппаратов очистки доменного газа:

1 — колошник печи; 2 - пылеуловитель; 3 — скруббер; 4 — труба Вентури; 5 — отвод газа на колошник для уравновешивания давления в межконусном пространстве; 6 — дроссельное устройство; 7 — водоотделитель; 8 — листовая задвижка; 9 — коллектор

Для транспортирования газа и его очистки у доменной печи сооружают систему газопроводов и очистных устройств. На рис. 1 показана схема расположения газопроводов и аппаратов для очистки доменного газа, принятая на печах, построенных в последнее время.

  Газ из доменной печи 1 по четырем вертикальным газоотводам 2 поступает к наклонному газоотводу грязного газа 3 и направляется в пылеуловитель 4 для грубой очистки. После отде­ления крупных частиц по газопроводу 5 газ поступает в скруббер б для полутон­кой очистки. Для тонкой очистки получистый газ через трубу Вентури 7, дроссель­ную группу 8 попадает в электрофильтр 9. Отсюда чистый газ по газопроводу 10 направляется в газовую сеть завода. .Дроссельная группа 8 установлена для под­держания повышенного давления газа над колошником и в тракте. Верхняя часть трубы Вентури 7 газопроводом 11 соединена с уравнительным клапаном 12 загру­зочного устройства доменной печи.

4. Аппараты газоочистки. Грубая газоочистка

Газ подвергают последовательно грубой, полутонкой и тонкой очистке.

Грубая газоочистка предусматривает отделение частиц размером больше 0,1 мм, используя в аппаратах грубой очистки инерционные и гравитационные свойства частиц пыли при резком уменьшении скорости и направления газового потока. Для грубой очистки преимущественно используются радиальные пылеуловители (рис. 2). Колошниковый газ поступает в пылеуловитель через вертикальную трубу, установленную по оси камеры 1. Скорость газа в этой трубе составляет 15-20 м/с, а в камере пылеуловителя 2 резко уменьшается до 0,6-1,0 м/с. Помимо снижения скорости поток газа в камере резко меняет направление своего движения. При этом крупные частицы пыли под действием инерционных и массовых сил сохраняют прямолинейное движение в вертикальном направлении и осаждаются в ниж­ней части пылеуловителя 3. Очищенный от крупных частиц газ выпускается через газопровод в верхней части камеры пылеуловителя 4. В нижней конусной части камеры расположено устройство для выпуска пыли 5. В связи с тяжелыми условиями работы пылеуловителя, поскольку через него движется газ с температурой 350-400 С и высокой эрозирующей способностью, внутренняя его поверхность футеруется огнеупорным кирпичом толщиной до 115 мм.



     Рис. 2. Радиальный пылеуловитель                        Рис. 3. Отсекающий клапан

Степень очистки газа в пылеуловителе достигает 90-95 %, а содержание пыли после аппарата составляет 1-3 г/м3. Качество очистки газа зависит как от характеристики пыли, так и от соотношения геометрических размеров аппарата. Чем больше отношение диаметров камеры и вертикальной трубы и больше высота ап­парата, тем эффективнее его работа. Существенное влияние на степень очистки газа оказывает уровень пыли в нижнем конусе аппарата. При переполнении конуса возможен унос пыли за счет захвата ее потоком газа, поэтому большое значение имеет соблюдение графика выпуска пыли.

Для выгрузки пыли под нижним конусом установлен винтовой транспортер-конвейер, состоящий из транспортера, отсечного клапана, задвижки и системы увлажнения. Нормальное положение клапана - закрытое. Открывают его при помо­щи электрической лебедки. Пыль из конуса поступает на два шнека, представляю­щих винтовой конвейер из двух шнеков, которые, вращаясь навстречу друг другу, перемещают пыль к разгрузочному отверстию. При движении пыль увлажняется водой, поступающей через форсунку. В зимнее время перед пуском транспортера через форсунку подают пар для разогрева смерзающихся остатков транспортируе­мой пыли.

В последнее время для уборки пыли используют пылеспускную трубу, вдоль которой установлены форсунки для увлажнения транспортируемой пыли. Пыль выгружается в железорудные вагоны.

Для отсечения пылеуловителя от печи в вертикальной трубе, а иногда и пост пылеуловителя устанавливают отсекающий клапан (рис. 3). Клапан конусного типа состоит из цилиндрического корпуса 2, в нижней части которого размещено седло 1 с двумя контактными поверхностями для повышения надежности отсечения. В полости конуса перемещаются два конуса-тарелки 3, установленные на штанге 4. Нижняя конус-тарелка шарнирно закреплена на штанге 4, а верхняя свободно насажена, что обеспечивает более плотный контакт рабочих поверхности тарелки и седла. Между седлами подают пар 5, давление которого превышает   давление колошникового газа, что позволяет полностью исключить утечки газа через клапан. Кроме отсекающего клапана, пылеуловители оборудуются атмосферным клапаном тарельчатого типа для вентиляции во время ремонта.

5. Полутонкая очистка

Полутонкая очистка доменного газа осуществляется до содержания -0,1—0,5 г/м3. Характерной особенностью аппаратов полутонкой очистки является смачивание частиц пыли водой и последующее их удаление в виде шлама. Эффективность мокрой очистки определяется способностью частиц смачиваться водой, степенью смешения газа с водой в процессе удаления пыли и развитием процессов укрупнения - коагуляции частиц пыли.

Скруббер (рис. 4) Представляет собой металлический цилиндр диаметром 6-8 м и высотой до 30 м. Подвод грязного газа осуществляется по центру аппарата с направлением потока 1 на зеркало воды 2, для осаждения крупных частиц. В верхней части скруббера размещается несколько рядов форсунок 3-6, обеспечи­вающих равномерно распределенный по поперечному сечению аппарата поток мел­ко распыленной воды 7. Загрязненная частицами пыли вода собирается в нижней конической части скруббера и через гидрозатвор 8 сбрасывается в сливной канал  9 и далее в отстойник. Очищенный и охлажденный до 30-50°С газ через патрубок 10        в верхней части корпуса отводится в следующий аппарат. Производительность современных скрубберов достигает 100-250 тыс. м3 газа в час. Для повышения эффективности очистки в старых конструкциях внут­реннее пространство скруббера заполнялось деревянной насадкой для создания развитой контактной поверхности газа и воды. Для выравнивания потока газа в по­перечном сечении аппарата насадку устанавливали в несколько ярусов. В настоящее время при работе с повышенным давлением газа на колошнике все большее рас­пространение получают безнасадочные скрубберы. При этом чаще применяют эвольвента о расположенные форсунки, т.е. максимально перекрывающие попе­речное сечение аппарата, с диаметром 12-40 мм. Эти форсунки нетребовательны к качеству воды, поступающей на орошение.


   Рис.4. Скруббер для охлаждения                Рис. 5 Схема трубчатого электрофильтра типа ДМ

и увлажнения доменного газа


После скрубберов увлажненный до насыщения водой газ поступает, как пра­вило, в низконапорные трубы Вентури. Низконапорная труба - распылитель пред­ставляет собой сопло сложной конфигурации, на входе которого расположены орошающие форсунки. В начальном сужающем участке трубы поток газа разго­няется до 50-80 м/с, при этом вода дробится на мельчайшие капли, образуя туман. Это способствует разрушению газовых оболочек на частицах пыли размером 1-2 мкм и последующей их коагуляции. В расширяющейся части трубы скорость частиц сохраняется практически постоянной, что позволяет осуществлять хорошее отделение жидкости от газа в каплеотделителе, установленном на выходе трубы-распылителя. В качестве каплеотделителя используется скруббер с насадкой из ке­рамических или металлических колец. Вода, загрязненная за счет действия сил инерции и смачивания, осаждается на насадку и смывается водой. Расход воды в скруббере-отделителе составляет 0,4-0,6 л/м3 газа.

5.Тонкая очистка

Тонкую очистку газа при работе доменных печей с повышенным давлением газов осуществляют в трубах-распылителях, а также в дроссельных устройствах. Труба-распылитель показана на рис. 6.Тонкая очистка обеспечивает снижение содержания пыли в колошниковом газе ниже 0,015 г/м3. Для тонкого отделения используют электрофильтры и трубы Вентури. Работа электрофильтров основана на свойстве перераспределения элект­рических зарядов с положительным и отрицательным знаком в нейтральных части­цах под действием электрического поля и последующем осаждением заряженных частиц на электродах.

В любом нейтральном веществе имеются заряды обоих знаков и при том в рав­ных количествах. При попадании в сильное электрическое поле газ ионизируется, то есть расщепляется на электроны и положительные ионы. Образующиеся электро­ны осаждаются на пылинках и заряжают их. При этом нарушается равномерное распределение зарядов и на частицах возникает избыток отрицательных зарядов. Заряженные частицы выпадают на осадительных электродах.

Рис. 6. Труба-распылитель

Для ионизации газа необходимо со­здать неоднородное электрическое поле и увеличить напряжение на электродах до 50-100 кВ, когда происходит лави­нообразный процесс ударной ионизации движущегося потока газа вблизи цент­рального электрода. Явление ударной ионизации называют коронированием. После создания короны дальнейшее уве­личение напряжения ведет к искровому пробою. В коронированном поле обра­зуются ионы обоих знаков, а в остальной области потока газа генерируются ионы, знак которых совпадает со знаком элек­трода. Благодаря местным дополнитель­ным полям происходит выравнивание величины электрического поля, что ослабляет эффективность газоочистки. Неоднородное электрическое поле мож­но создать только при цилиндрической форме коронирующего электрода.

Эффективность работы электрофильтров зависит не только от состояния газовой среды, но и от состояния электрода, поэтому обязательным условием хорошей работы устройства является чистота поверхности электродов. Для очистки электро­дов применяется их встряхивание и промывка водой.

На рис. 5 приведена схема трубчатого электрофильтра типа ДМ с вертикальным движением газа. Электрофильтр имеет цилиндрический корпус 1 из листового ме­талла. Внутри корпуса размещены коронируюшие электроды 2, выполненные в виде проводок диаметром 5 мм, для обеспечения натянутости которых прикреп­лены натяжные грузы, и осадительные электроды 7.Осадительные электроды выполнены из труб внутренним диаметром 233 мм. Вода для промывки осадительных электродов подается через два коллектора .5, 6. Газ на очистку поступает через патрубок в нижней части аппарата. Для равномерного распределения газа в поперечном сечении фильтра установлены направляющие лопатки и газораспредели­тельные решетки 8.

Поток газа после прохождения выравнивающих решеток 8 поступает в трубы осадительных электродов 7 и электризуется. Заряженные частицы осаждаются на внутренней поверхности труб и затем омываются водой в нижнюю коническую часть аппарата. По мере накопления уловленных частиц шлам через гидроэатвор 10 и сбрасывающие лотки 9 направляется в отстойник.

Для создания давления на колошнике печи в системах газоочистки исполь­зуется дроссельное устройство, в корпусе которого смонтированы три дросселя грубой регулировки 1 диаметром 750 мм и дроссель тонкой регулировки 2 диаметром 400 мм. Дросселями грубой и тонкой регулировки в печи устанавли­вается необходимое повышенное давление, а при помощи клапанного дросселя 3 осуществляется автоматическая его стабилизация при изменении технологических параметров. Для снижения износа клапанов к дроссельной группе через специаль­ную систему орошения 4 подведена вода.

Практика показала, что при достаточном перепаде давления и скорости газа, достигающей 200-250 м/с, дроссельная группа является эффективным газоочист­ным устройством. При работе по тому же принципу, что и труба Вентури, в дрос­сельной группе уменьшается содержание пыли в газе до 5—10 мг/м*.

Основным недостатком дроссельной группы является большая потеря давления, которая даже частично не восстанавливается. В связи с применением на доменных печах бескомпрессорных газоутилизационных турбин, позволяющих использовать перепад давления для выработки электроэнергии, дроссельная группа не исполь­зуется и в схеме газоочистки сохраняется как резервное устройство на случай вы­хода из строя турбин.

Дезинтегратор приведен на рис. 7. Он представляет собой центробежный вентилятор, внутри корпуса которого вращается вал с дисками, снабженными лопастями. В дезинтегратор подают воду. Газ и вода просачиваются между подвижными и неподвижными бичами. В результате пыль тщательно перемешивается с мельчайшими частицами воды, которые отбрасываются к стенкам камер дезинтегратора. Подаваемая на стенки камер вода смывает отбрасываемые ротором мелкие капельки, содержащие частицы пыли. Производительность дезинтеграторов достигает 80 тыс. м3/ч. Степень очистки газа в дезинтеграторах несколько ниже, чем в электрофильтрах, а расход энергии выше. Поэтому этот способ является менее перспективным.

Рис. 7. Дезинтегратор для очистки газа:

1 — неподвижные бичи; 2 — труба для подвода воды; 3 — бичи; 4 — лопатки; 5 — корпус с неподвижными бичами; 6 — диск; 7 — вал; 8 — барабан с отверстиями; 9 — крылья вентилятора; 10 — труба для отвода шлама; 11 — труба для отвода воды

Очищенный газ направляется на отопление воздухонагревателей доменного цеха (15—30 %), коксовых печей (30—32 %), нагревательных колодцев и печей прокатных цехов (20—25 %) и на другие нужды завода.

Сухую колошниковую пыль периодически выпускают из пылеуловителей в специальные вагоны, а загрязненную воду после мокрой газоочистки очищают в отстойниках, в которых осаждается до 92 % пыли в виде шлама, а около 8 % примесей уносится водой.

7. ОЧИСТКА ГАЗА В ТРУБАХ – РАСПЫЛИТЕЛЯХ И ДРОССЕЛЬНАЯ ГРУППА

Трубы – распылители.

 В современных газоочистительных схемах широко применяются установки труб – распылителей, называемых обычными трубами Вентури и помещаемых или перед скрубберами на входе в них газа, или, что чаще, после них на выходе. Производительность труб – распылителей достигает 380 тыс. м3/ч.

Принцип работы основан на прохождении газа через трубу, в горловину которой вводится вода для коагуляции частиц пыли. Равномерное распределение воды по всему сечению пережима достигается различной длиной эвольвентных двусторонних сопел (диаметр отверстия 15 мм), расположенных в два яруса и имеющих различное число выходных отверстий (от одного до трех) и различное избыточное давление подаваемой воды 274 – 410 кПа для труб с одним выходом и 68,6 – 206 кПа для труб с тремя выходами. Оптимальный расход воды при этом составляет 1,4 – 1,47 м3/1000 м3 газа.

Струями газового потока, имеющего скорость 60 – 120 м/с, достигается тонкое распыление воды, которая увлекает частицы пыли. Более крупные частицы пыли оседают в шламоотделителе, другие улавливаются в скруббере или электрофильтре в зависимости от места установки трубы – распылителя.

Применяются несколько типов труб – распылителей, схемы которых приведены на рис.3. Имея одинаковый принцип устройства, они различаются способом подвода воды и имеют за рубежом такие названия, как трубы Пис-Анони-Вентури, Кемико-скрубберы (США и Англия) и пылеуловители Баумко (а); трубы SF-Вентури (б); Свенска флакт-фабрикен (в) (Швеция); трубки Кертинга или Аэрожет (Франция).

При работе доменной печи с высоким давлением газа на колошнике в трубах возможно достижение перепада до 49 кПа, что обуславливает высокую степень очистки доменного газа.

Дроссельные группы. В газоочистительных комплексах доменных печей, работающих с повышенным давлением газа на колошнике, устанавливаются дроссельные группы для регулирования давления газа и дополнительной очистки его от пыли Принцип их работы аналогичен принципу работы труб-распылителей. Отличие состоит в том, что в трубе- распылителе около 80% энергии газа восстанавливается в диффузоре, тогда как в дроссельной группе энергия не восстанавливается, а расходуется для турбулентного перемешивания воды и газа. Степень очистки газа в дроссельной группе повышается при увеличении скорости его и количества воды, подаваемой для орошения.

Большая скорость газа в дроссельном устройстве, увлажнение и резкое изменение направления его движения способствует выделению из газового потока пыли и коагуляции ее частиц, что обеспечивает хорошее улавливание их в последующих агрегатах.

Для снижения абразивного износа клапанов и коагуляции пыли к дроссельным клапанам подводят воду, разбрызгиваемую при помощи форсунок.

Улучшение качества очистки газа после установки труб-распылителей и дроссельных групп в условиях повышенного давления газа на колошнике обусловило возможность перехода на схему очистки газа, принятую, в частности, для доменной печи объемом 5000 м3, а именно: сухой радиальный пылеуловитель – безнасадочный скруббер высокого давления – три трубы – распылителя с каплеуловителем и дроссельной группой.

Практика показала, что такая схема может снизить запыленность газа до 2,85 – 3,90 мг/м3 при общем содержании пыли на выходе газа из печи 10,2 – 24,7 г/м3. Поэтому электростатический способ тонкой очистки газа заменяется комбинацией скрубберов высокого давления с трубами Вентури, что вполне обеспечивает необходимую степень очиски газа.

Основным недостатком тонкой очистки при помощи дроссельной группы является большая потеря давления, которое не восстанавливается даже частично, что вызывает высокие энергозатраты.

Перевод доменных печей на работу с повышенным давлением газа на колошнике, уменьшение в связи с этим скорости отвода газа, обогащение кислородом воздушного дутья, замена в шихте сырой железной руды агломератом или окатышей приводят к значительному снижению запыленности доменного газа и изменению фракционного состава пыли.

Повышение давления отходящего доменного газа позволяет использовать потенциальную энергию отходящего сжатого газа для выработки электроэнергии в газовых утилизационных бескомпрессорных турбинах (ГУБТ).

Для надежной работы турбин, исключающей выпадение влаги в их хвостовой части, температура газа на выходе из турбины должна превышать точку росы. Поэтому минимальная входная температура на ГУБТ (Р=0,3 МПа) принята равной 120°С. Так как для очистки доменного газа применяются схемы мокрой очистки, то перед подачей газа в ГУБТ его необходимо подогревать.

По техническим условиям ГУБТ температура поступающего в них доменного газа должна быть в пределах 100-200°С. Между тем, в случае мокрой очистки температура газа снижается до 30-40°С и перед турбиной его приходится снова подогревать, сжигая часть газа.

Поэтому чрезвычайно актуальной является сухая очистка доменного газа, при которой он будет поступать в ГУБТ с требуемой температурой и расход газа на подогрев, а также необходимое для подогрева оборудование станет не нужным.

Главным недостатком смешивающего подогрева для ГУБТ является балластирование горючего газа продуктами сгорания. Поверхностные нагреватели не нашли применения из-за их громоздкости и сложности эксплуатации, связанной с возможностью образования отложений пыли на поверхности теплообмена. На это указывает и опыт эксплуатации ГУБТ, когда при размещении смешивающего подогревателя непосредственно перед турбиной пыль не успевает высохнуть, и даже при малой запыленности газа (5 мг/м3) в направляющем аппарате турбины, наблюдаются отложения пыли. Так доменный газ широко используется на металлургических заводах в основном в качестве топлива, допустимая величина содержания пыли в очищенном газе не должна превышать 4 мг/м3.

Рис.5. ГУБТ

1-доменная турбовоздуходувка; 2-паровая турбина; 3- доменная печь; 4-сухие пылеуловители; 5-скрубберы; 6- трубы-распылители; 7-водоотделители; 8-электрофильтры; 9-автоматическое дроссельное устройство; 10- смешивающий подогреватель; 11-ГУБТ; 12- электрогенератор; 12 воздух на горение в смешивающий подогреватель.

Потребители доменного газа – коксовые печи, воздухонагреватели доменных печей, газовые утилизационные бескомпрессорные турбины. Для ограничения количества влаги в подаваемом потребителям доменном газе охлаждение его осуществляется до температуры не ниже 35-40°С при давлении 0,1 МПа (влагосодержание 47-63 г/м3). Это связано с тем, что выпадающая из газа влага способствует коррозии металла газоходов и является причиной затвердеваний отложений пыли на оборудовании. Повышенное содержание влаги снижает калорийность доменного газа и увеличивает потери тепла с отходящими газами.

Стоки доменного производства

В доменном процессе вода используется для охлаждения агрегата и для обеспечения работы газоочисток. Основной объем воды затрачивается на систему охлаждения.

         Доменные печи позволяют работать на полном замкнутом цикле.

В системе охлаждения на выходе воды из теплообменной системы должна быть установлена градирня ( где остывает вода). После охлаждения вода опять подается в систему охлаждения  доменной печи ( ОАО ММК им. Ильича).

На з-де Азовсталь вода забирается из моря, прогоняется через трубы и сбрасывается обратно. При этом происходит термическое загрязнение воды.

В форсуночных скрубберах и трубах Вентури газоочистка составляет 1.5-1.2 л/м Велик расход воды на газоочистку.

Вода, отходящая из газоочистного аппарата содержит фенол (пришедший с коксом), аммиак, часть оксидов серы, а также пары цветных металлов, t кипения которых =500 0С.

Пары цветных  металлов оседают на первой мокрой системе ГО.

При замкнутой системе ГО доменные шламы сливаются в шламоотстойники, где они отстаиваются и разделяются на твердый компоненты чистую воду. Шлам извлекается и поступает на площадку для обезвоживания.

При отсутствии замкнутой системы очистки шлам поступает в шламоотстойник, затем вода с него сливается в шламонакопитель и далее- в водоем. Из шламонакопителя вода извлекается и используется в дальнейшей переработке.

ОТХОДЫ доменного производства

Люди также интересуются этой лекцией: 11.2 Характеристика основных этапов.

Основным отходом ДП является доменный шлак. Вторым по величине отходом является песок («мусор» литейного двора) с литейных дворов, представляющий собой смесь песка, шлака, металла. Он вывозится на свалку. Во время капитального ремонта доменной печи образуется большое количество огнеупорного материала.

СПИСОК Рекомендуемой ЛИТЕРАТУРЫ

1. Металлургия чугуна: Ефименко Г.Г., Гиммельфарб А.А., Левченко В.Е.. – Киев: Вища школа. Головное изд-во, 1982. стр. 417-422.

2. Пылеулавливание и очистка газов в металлургии. Старк С.Б. М., «Металлургия», 1977. стр. 202 – 208.

3. Металлургия чугуна. Вегман Е.Ф., Жеребин Б.Н., Похвиснев А.Н., Юсфин Ю.С., Клемперт В.М. М.: Металлургия, 1989. стр.485 – 492.

4. Техника пылеулавливания и очистка промышленных газов: Справ.изд. Алиев Г.М.-А. М.: Металлургия, 1986. стр.425 – 429.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее