Популярные услуги

Датчики Холла и магнитосопротивления

2021-03-09СтудИзба

Глава 14

ДАТЧИКИ ХОЛЛА И МАГНИТОСОПРОТИВЛЕНИЯ

§ 14.1. Физические основы эффекта Холла и эффекта магнитосопротивления

Эффект Холла — это физическое явление, которое заклю­чается в следующем. Рассмотрим пластинку (рис. 14.1) из прово­дящего материала, вдоль которой проходит ток I. Если перпенди­кулярно плоскости пластинки и направлению тока действует маг­нитное поле напряженностью Я, то в пластине возникает ЭДС, пропорциональная и току, и напряженности магнитного поля:

                                                 Е=КIН,                                  (14.1)

где K=kx /d — коэффициент, зависящий от материала и толщины пластины d; kx — постоянная Холла.

Направление этой ЭДС, которая называется ЭДС Холла, пер­пендикулярно току и полю, т. е. ее можно замерить между боко­выми продольными гранями пластины (рис. 14.1) с помощью элек­троизмерительного прибора. Причина появления ЭДС Холла в том, что на движущиеся заряды в магнитном поле действует сила Ло­ренца. Ток в пластине — это и есть упорядоченное движение за­рядов (в металле — электронов). Под действием магнитного поля они смещаются перпендикулярно на­правлению своего движения и вблизи одной продольной грани возникает из­быток зарядов, а вблизи другой — недо­статок. В обычных проводниковых ма­териалах ЭДС Холла очень мала, что объясняется малой скоростью (точнее — подвижностью) носителей тока из-за их большой концентрации.

Рекомендуемые материалы

Лабораторная работа 2 - Отчет к ЛР 2 - Исследование асинхронного двигателя с короткозамкнутым ротором
Лабораторная работа 1 - Отчет к ЛР 1 - Исследование двигателя постоянного тока независимого возбуждения
FREE
МУ к ДЗ - Формальное представление схем электрических принципиальных для решения задач
FREE
методичка Буйлова Е.А. для выполнения лабораторной работы №2 по РТК
КР - Расчет токовой защиты нулевой последовательности в сети с глухозаземленной нейтралью
Гидравлический пресс 1.6 МН (для листовой штамповки)

Хотя эффект Холла известен уже более ста лет, прак­тическое применение его началось лишь в итоге развития технологии получения полупроводников. Имен­но в чистых полупроводниках обеспечивается высокая подвиж­ность носителей тока, поэтому постоянная Холла для чистых по­лупроводников во много раз больше, чем для металлов.

Эффект магнитосопротивления — это другое физическое явле­ние, заключающееся в изменении сопротивления проводящих тел в магнитном поле. Объясняется это тем, что в присутствии магнит­ного поля на носители тока действует сила Лоренца, изменяющая траекторию их движения. Если бы не было магнитного поля, то под действием приложенного к проводящему телу напряжения носи­тели тока перемещались бы по кратчайшему направлению. Изме­нение траектории под действием магнитного поля всегда удлиняет путь носителей тока, что проявляется как увеличение сопротивле­ния. В сильных поперечных магнитных полях некоторые вещества могут иметь относительное увеличение сопротивления а=Д/?//? в десятки раз. Чаще всего величина а связана с напряженностью магнитного поля Я квадратичной зависимостью

                                                                                 (14.2)

где kR — коэффициент, зависящий от материала и размеров.

Эффекты Холла и магнитосопротивления используются в дат­чиках, с помощью которых могут быть измерены различные элект­рические и магнитные величины. Кроме того, они могут исполь­зоваться для математической обработки электрических сигналов: сложения, умножения, деления, возведения в квадрат и извлече­ния корня; для различных преобразований электрических сигна­лов.

§ 14.2. Материалы для датчиков Холла и датчиков магнитосопротивления

Использование датчиков Холла для целей автоматиче­ского измерения будет рациональным в том случае, если они име­ют достаточно высокую чувствительность и мало подвержены влия­нию температуры. Чувствительность датчика зависит от выходной ЭДС, т. е. от постоянной Холла, которая, в свою очередь, опреде­ляется подвижностью носителей тока. В проводящих телах носи­телями тока являются электроны. При обычных температурах электроны находятся в хаотическом тепло­вом движении с самыми различными скоростями. Однако если вдоль тела соз­дать электрическое поле Е, приложив напряжение U, то все электроны начнут передвигаться в направлении поля с некоторой средней скоростью v (при этом отдельные электроны могут иметь как большую, так и меньшую скорости). Подвижность носителей тока (р) опре­деляется как отношение скорости v к на­пряженности электрического поля Е:

                   (14.3)

Подвижность зависит от того, как часто электрон при своем движении сталкива­ется с решеткой твердого тела. Следует особо отметить, что большое значение ЭДС Холла еще не означает, что в этом веществе велик эффект Холла и оно годится для технических при­менений. Большое значение ЭДС может быть полученj за сче* большого напряжения U, т. е. больших затрат электрической энергии. В то же время в другом материале такая же ЭДС Холла и те же скорости носителей тока могут быть получены при мень­шем напряжении только за счет большей подвижности. Такой ма­териал выгоднее для применения в датчике Холла.

Короче говоря, основным требованием, предъявляемым к мате­риалам для датчиков, является сочетание большой подвижности носителей тока с минимальными температурными зависимостями.

В зависимости от технологии изготовления различают кристал­лические (в форме пластинки) и пленочные датчики.

В качестве материала кристаллических датчиков используются различные соединения индия: мышьяковистый индий IriAs, фосфид индия 1nР, сурьмянистый индий InSb, а также германий Ge и крем­ний Si.

Наибольшее значение постоянной Холла у материала InSb, но оно сильно зависит от температуры. На рис. 14.2 показаны зависимости постоянной Холла от температуры для разных материалов (1 — InSb, 2 — InAs, 3 —твердый раствор InAs и 1пР). Для гер­мания постоянная Холла в десятки раз меньше, но он обладает значительно большим удельным сопротивлением. Из германия можно делать датчики с сопротивлением в несколько килоом. Еще ббльшим удельным сопротивлением обладает кремний, но его труд­нее очистить от примесей. Высокую степень очистки полупроводни­ковых материалов получают при плавке в космических лаборато­риях.

Для размещения в узких зазорах очень удобны пленочные дат­чики Холла. Для их изготовления используется метод испарения в вакууме исходного вещества с последующим осаждением на под­ложку из слюды. Толщина пленочных датчиков составляет 10— 30 мкм, что в сотни раз меньше, чем у кристаллических датчиков. Материалом для пленочных датчиков служат соединения ртути: селенид ртути HgSe и теллурид ртути HgTe. Чем тоньше пленка, тем меньше постоянная Холла. По своим возможностям примене­ния в системах автоматики пленочные датчики примерно равно­ценны с германиевыми и даже лучше по температурной стабильно­сти. Но они очень дорогие. В настоящее время проводятся иссле­дования   новых   материалов,   пригодных   для   использования   в датчиках Холла и магнитосопротивления.

§ 14.3. Применение датчиков Холла и датчиков магнитосопротивления

Основное применение датчики Холла и датчики магнито­сопротивления находят для измерения магнитных полей. Они при­меняются в очень широком диапазоне напряженности магнитного поля: от 1 до 109 А/м. С их помощью можно определять кривые намагничивания магнитных материалов, распределение магнитных полей в электрических машинах и электромагнитных устройствах. При измерениях в сильных магнитных полях (H>107 А/м) ЭДС Холла составляет десятые доли вольт и  может быть  измерена вольтметром с  большим  внутренним сопротивлением  или с по­мощью   компенсационной   схемы.   Регулировка   чувствительности производится изменением напряжения, питающего датчик. Для уве­личения выходного сигнала  используют последовательное соеди­нение нескольких датчиков Холла. При измерениях в средних маг­нитных полях (105 А/м<H<107 А/м) требуется усиление выход­ного напряжения датчика. При измерениях в слабых магнитных полях (H<105 А/м)  используют так называемые концентраторы магнитного поля.  В  качестве таких концентраторов  используют круглые длинные стержни с узким зазором между ними, куда и по­мещается датчик. Стержни изготовляют из материалов с высокой магнитной проницаемостью, чаще всего из пермаллоя. При длине стержней в 1 метр, диаметре 5 мм и зазоре в 0,3 мм можно полу чить коэффициент усиления магнитного поля в 1500 раз. Датчики Холла с концентраторами магнитного поля способны чувствовать напряженность магнитного поля в 0,1 А/м. С их помощью можно исследовать даже очень слабое магнитное поле Земли. Однако на­до отметить, что измерения средних и слабых магнитных полей с помощью датчиков Холла пока целесообразны лишь в лаборатор­ных, а не промышленных условиях.

   В средних и слабых магнитных • полях датчики Холла очень чувствительны к колебаниям температуры и нуждаются в стабиль-ном питании и сложных измери­тельных схемах. Например, тер-моЭДС между материалом дат­чика и его выводами соизмери­ма с выходным сигналом. Да и при измерениях в сильных маг­нитных полях используют схемы термокомпенсации погрешности с помощью терморезисторов, а по­рой даже и термостатироваиие, т. е. измерения проводят в каме­ре, где автоматически поддержи­вается постоянная температура.

По   существу,   датчик   Холла является элементарным умножающим устройством, поскольку его выходной сигнал пропорциона­лен произведению напряженности на ток. На этом, в сущности, и основаны все возможные применения датчика Холла. При посто­янном токе через датчик выходной сигнал пропорционален напря­женности магнитного поля. А поместив датчик в постоянное маг­нитное поле, можно измерять ток, проходящий через него, по зна­чению ЭДС Холла. Это единственный способ определения распре­деления токов в электролитических ваннах.

5.1. Краткая характеристика источников воды - лекция, которая пользуется популярностью у тех, кто читал эту лекцию.

Датчики магнитосопротивления также вначале использовались для измерения магнитных полей, но затем были вытеснены более совершенными датчиками Холла на новых полупроводниковых ма­териалах. Однако датчики магнитосопротивления по устройству проще датчиков Холла. Наилучшей формой для датчика магнито­сопротивления является диск с одним выводом в центре и дру­гим — на окружности. Зависимости относительного изменения со­противления датчиков магнитосопротивления разной формы от маг­нитной индукции показаны на рис. 14.3.

Основным достоинством датчика магнитосопротивления являет­ся возможность бесконтактного изменения активного сопротивле­ния.

Одним из возможных применений датчиков магнитосопротив­ления является создание бесконтактных клавишных выключателей. При нажатии на кнопку такого выключателя перемещается магнити изменяется магнитный поток, воздействующий на датчик магни-тосопротивления.

Известны также применения датчиков Холла и магнитосопро-тивления в системах автоматики в качестве измерителей тока в токоведущих шинах, бесконтактных потенциометров для преобра­зования механического перемещения (линейного или углового) в пропорциональный электрический сигнал. Удобно применять дат­чики Холла в автоматических устройствах, контролирующих состоя­ние стальных канатов.

Пока еще датчики Холла и датчики магнитосопротивления срав­нительно мало применяются в системах промышленной автомати­ки. Но бурное развитие полупроводниковой технологии ведет к расширению их применения.

Следует отметить, что в последнее время к таким датчикам при­бавились еще и близкие по принципу действия магнитодиодные и гальваномагнитно-рекомбинационные преобразователи.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
441
Средний доход
с одного платного файла
Обучение Подробнее