Для студентов МФПУ «Синергия» по предмету Высшая математикаВысшая математика (Темы 1-6)Высшая математика (Темы 1-6)
5,0059
2025-01-15СтудИзба

Высшая математика Синергия Ответы на тесты 1-6, итоговый тест

-22%

Описание

Тесты были сданы в 2024 году.
Представлены ответы на большинство вопросов по предмету "Высшая математика" (Темы 1-6).
Итоговый набранный балл 95 из 100 (Скриншот прилагаю).
ВНИМАНИЕ! Покупайте работу, только убедившись, что ваши вопросы совпадают с представленными ниже. Для этого рекомендую сначала запустить тест и сверить хотя бы несколько вопросов.

УЧЕБНЫЕ МАТЕРИАЛЫ
  • Введение
  • Тема 1. Алгебра матриц
  • Тема 2. Теория определителей
  • Тема 3. Системы линейных алгебраических уравнений
  • Тема 4. Основы векторной алгебры и ее применение в геометрии
  • Тема 5. Элементы аналитической геометрии на плоскости
  • Тема 6. Элементы аналитической геометрии в пространстве
  • Итоговая аттестация

СПИСОК ВОПРОСОВ:

ТЕСТ 1

Дана матрица A = ((1, 1, −2), (1, 1, 2), (1, 2, 1)). В результате операции транспонирования была получена матрица Aᵀ = ((1, 1, 1), (1, 1, 2), (−2, 2, 1)).
Каким образом была получена матрица Aᵀ?
  • Сложили строки и столбцы матрицы.
  • Возвели матрицу в степень.
  • Строки и столбцы поменяли местами с сохранением порядка.

Две матрицы А и В называются … матрицами, если их размеры совпадают и их соответствующие элементы равны

Квадратная матрица – это матрица, у которой …
  • число строк не равно числу столбцов
  • ниже главной диагонали лежат нули
  • все элементы равны нулю
  • число строк равно числу столбцов

Математик Джеймс Сильвестр ввел термин «матрица» в …
  • 1860 г.
  • 1840 г.
  • 1850 г.
  • 1870 г.

Неверно, что матрицы в паре … можно перемножить (укажите 2 варианта ответа)
  • ((1, 2), (3, 4), (5, 6)) и ((3, 4), (5, 6))
  • ((0, 0, 1), (0, 1, 0), (2, 0, 0)) и ((1, 2, 3), (0, 1, 2))
  • ((1, 2, 3), (4, 5, 6)) и ((3, 4), (5, 6))
  • ((5, −8), (−7, 4), (5, −5)) и ((−3, 4), (5, −6))

Неверно, что произведение матриц А и В вводится только в том случае, когда …
  • матрица А согласована с матрицей В
  • матрица В согласована с матрицей А
  • число столбцов матрицы А равно числу строк матрицы В
  • матрицы А и В одной размерности

Расположите результаты умножения матрицы A = ((3, 4), (0, −7), (−2, 5)) на число α в порядке α = 2, α = −3, α = 5, α = −5:
1 ((6, 8), (0, −14), (−4, 10))
2 ((−9, 12), (0, 21), (6, −15))
3 ((15, 20), (0, −35), (−10, 25))
4 ((−15, −20), (0, 35), (10, −25))

Суммой матриц A = ((−2, 4, 5), (8, −10, 4)) и B = ((−5, 1, −2), (−4, 9, −3)) является матрица C, равная …
  • ((−7, 5, 3), (4, −1, 1))
  • ((−7, −5, 3), (−4, 1, −1))
  • ((7, −5, 3), (−4, 1, −1))
  • ((7, 5, 3), (4, 1, −1))

Установите соответствие между матрицей и ее видом:
A. ((1, 2, 3), (2, 1, 3), (3, 1, 2))
B. ((0, 0, 0), (0, 0, 0), (0, 0, 0))
C. ((1, 0, 0), (0, 1, 0), (0, 0, 1))
D. ((3, 0, 0), (2, 4, 0), (5, 1, 5))
E. квадратная матрица
F. нулевая матрица
G. единичная матрица
H. нижняя треугольная матрица

Установите соответствие между свойствами сложения матриц А и В и их записями:
A. Коммутативность
B. Ассоциативность
C. Сложение с нейтральным элементом
D. Сложение с противоположным элементом
E. А + А = В + А
F. (А + В) + С = А + (В + С)
G. А + 0 = 0 + А
H. А + (-а) = (-а) + А + 0

Числовой матрицей размера m х n называется
  • четная или нечетная числовая функция
  • прямоугольная таблица m х n чисел, состоящая из m строк и n столбцов
  • вектор
  • прямоугольная таблица m х n чисел, состоящая из m столбцов и n строк


ТЕСТ 2

Дана матрица A = ((1, 0, 1), (2, 3, 5), (0, 4, 8)). Найдем определитель матрицы:
|A| = 1 3 8 + 0 5 0 + 1 2 4 − 1 3 0 − 1 5 4 − 0 2 8 = 24 + 0 + 8 − 0 − 20 − 0 = 12.
Как был найден определитель матрицы?
  • Определитель матрицы был найден при помощи теоремы Лапласа.
  • Определитель матрицы был найден при помощи элементарных преобразований.
  • Определитель матрицы был найден при помощи формулы треугольника.

Матрица порядка n имеет … миноров (n– 1)-го порядка
  • n + 1
  • n

Определитель квадратной матрицы равен … произведений элементов любой строки (столбца) на их алгебраические дополнения

Понятие определителя вводится для … матриц
  • треугольных
  • квадратных
  • ступенчатых

Пусть дана матрица A = ((2, 3), (4, −5)), тогда ее определитель равен …
  • 22
  • -25
  • -22

Пусть дана матрица A = ((2, 3, −5), (4, −2, 6), (1, 1, −7)), тогда ее определитель равен …

Пусть дана матрица A = ((2, 3, −5), (4, −2, 6), (1, 1, −7)), тогда определитель транспонированной матрицы равен …
  • 78
  • -88
  • 88

Пусть дана матрица A = ((2, 3, −5), (4, −2, 6), (1, 1, −7)), тогда сумма миноров M₁₃ + M₃₁ равна …

Расположите значения миноров M₁₁, M₁₃, M₂₁, M₃₂ матрицы A = ((2, −7, 3), (4, 5, −2), (−8, 1, −3)) в порядке убывания:
1 M₁₃
2 M₂₁
3 M₁₁
4 M₃₂

Установите соответствие между размерностью матрицы и формулой для вычисления ее определителя:
A. A(1×1)
B. A(2×2)
C. A(3×3)
D. a₁₁
E. a₁₁a₂₂-a₁₂a₂₁
F. Σ (−1)ᵏ⁺¹a₁ₖM₁ₖ

Число, котороевычисляетсяпоформуле a₁₁ a₂₂ − a₁₂ a₂₁ дляматрицы A = ((a₁₁, a₁₂), (a₂₁, a₂₂)), называется


ТЕСТ 3

Данасистемауравнений {x₁ + 2 x₂ − x₃ = 1, −3 x₁ + x₂ + 2 x₃ = 0, x₁ + 4 x₂ + 3 x₃ = 2. Решая уравнение методом Крамера, какие действия необходимо совершить?
  • Записать расширенную матрицу системы; выполнить элементарные преобразования; получить эквивалентную систему уравнений.
  • Записать матричное уравнение; вычислить определитель матрицы; найти обратную матрицу; найти алгебраические дополнения; решить систему матричного уравнения.
  • Найти определитель матрицы; найти значения n определителей путем замены первого столбца коэффициентов столбцом из свободных членов; найти значение неизвестных через отношения советующих полученных определителей к определителю изначальной матрицы.

Пусть дана система уравнений {2x₁ + 2x₂ + x₃ = −6, 3x₁ + 2x₂ − x₃ = −8, 4x₁ − x₂ − x₃ = −7, тогда ее решение равно …
  • (1,2,1)
  • (2,1,1)
  • (2,1,2)

Пусть дана система уравнений {2x₁ + 3x₂ − x₃ = 9, x₁ − 2x₂ + x₃ = 3, x₁ + 2x₃ = 2, тогда ее решение равно …
  • (4,0,-1)
  • (4,2,-1)
  • (4,3,-1)

Пусть дана система уравнений {3x + 2y − 4z = 8, 2x + 4y − 5z = 11, 4x − 3y + 2z = 1, тогда выражение x + y + z равно …
  • 6
  • 7
  • 8

Пусть дана система уравнений A = {2x₁ + 3x₂ − x₃ = 9, x₁ − 2x₂ + x₃ = 3, x₁ + 2x₃ = 2, тогда определитель |A| этой системы равен …

Пусть дана система уравнений A = {2x₁ + 3x₂ − x₃ = 9, x₁ − 2x₂ + x₃ = 3, x₁ + 2x₃ = 2, тогда определитель |A₁| этой системы равен …

Пусть дана система уравнений A = {2x₁ + 3x₂ − x₃ = 9, x₁ − 2x₂ + x₃ = 3, x₁ + 2x₃ = 2, тогда определитель |A₂| этой системы равен …

Пусть дана система уравнений A = {2x₁ + 3x₂ − x₃ = 9, x₁ − 2x₂ + x₃ = 3, x₁ + 2x₃ = 2, тогда определитель |A₃| этой системы равен …

Расположите выражения, известные для системы линейных уравнений {2x₁ + 3x₂ + 4x₃ + x₄ = 1, x₁ + 4x₂ + 3x₃ + 2x₄ = 3, 7x₁ + 5x₂ + 6x₃ + 7x₄ = 2, в порядке «основная матрица системы, расширенная матрица системы, матрица неизвестных, матрица правой части»:
1 ((2, 3, 4, 1), (1, 4, 3, 2), (7, 5, 6, 7))
2 ((2, 3, 4, 1, 1) (1, 4, 3, 2, 3), (7, 5, 6, 7, 2))
3 ((x₁), (x₂), (x₃))
4 ((1), (3), (2))

Система уравнений {x₁ − 2x₂ + 3x₃ = 0, −x₁ + 2x₂ + 4x₃ + 3x₄ = 0, −5x₂ + 2x₄ = 0 …
  • имеет одно решение
  • имеет бесконечно много решений
  • не имеет решений

Установите соответствие понятия и его характеристики
A. Совместная система уравнений
B. Несовместная система уравнений
C. Определенная система уравнений
D. система уравнений, имеющая хотя бы одно решение
E. система уравнений, не имеющая решений
F. совместная система уравнений, имеющая единственное решение


ТЕСТ 4

Вектор a{−4, 8, −9} имеет длину, равную …
  • √150
  • √160
  • √161

Векторное произведение векторов a{1, 2, 3} и b{4, 5, 6} равно …
  • {-3,6,-3}
  • {3,6,3}
  • {-3,-6,-3}

Дан вектор a = {2, 3, 2}.
Найти вектор x, коллинеарный вектору a = {2, 3, 2} и удовлетворяющий условию (x, a) = 34.
  • x = {3, 6, 4}
  • x = {4, 5, 4}
  • x = {4, 6, 4}

Два вектора образуют базис на плоскости тогда и только тогда, когда эти векторы …
  • коллинеарны
  • компланарны
  • неколлинеарны

Линейная комбинация векторов a₁, …, aₙ называется … комбинацией, если хотя бы один из коэффициентов λ₁, …, λₙ отличен от нуля

Пусть дан вектор a{−3, 7, 2}, тогда длина вектора −2a равна …

Пусть даны векторы a{1, 2, 3} и b{8, 9, 10}, тогда сумма координат вектора a + b равна …

Расположите условия для векторов a{a₁, a₂, a₃} и b{b₁, b₂, b₃} в порядке «векторы коллинеарны, векторы перпендикулярны, векторы образуют острый угол»:
1 b₁/a₁ = b₂/a₂ = b₃/a₃
2 a ⋅ b = 0
3 a ⋅ b > 0

Скалярное произведение векторов a{2, 3, 4} и b{−1, −2, −3} равно …

Сумма координат вектора a = 8i − 4k равна …

Установите соответствие между понятием и его определением:
A. Векторы
B. Единичные векторы
C. Компланарные векторы
D. направленные отрезки
E. векторы, длина которых равна единице
F. векторы, лежащие в одной плоскости или в параллельных плоскостях


ТЕСТ 5

Говоря о взаимном расположении двух прямых y=3x+5 и y=-2x+1 на плоскости, можно утверждать, что эти прямые …

Дана прямая 5x + 5y – 7 = 0. Какой угол образует с положительным направлением оси абсцисс данная прямая?
  • 105
  • 135
  • 60

Каноническое уравнение прямой, проходящей через точки A(2,3) и B(0,5), имеет вид …
  • (x − 2) / −2 = (y − 3) / 2
  • (x − 3) / 2 = (y − 2) / 3
  • (x + 3) / −2 = (y − 2) / −3

Ордината точки пересечения прямых y₁=2x+1 и y₂=-2x-1 равна …

Расположите прямые y₁, y₂ и y₃, заданные уравнениями, в порядке убывания их угловых коэффициентов:
1 y=x+2
2 y=-x-3
3 y=-3x

Расстояние от точки A(1,5) до прямой 3x-4y-3=0 равно …

Сумма координат точки пересечения прямых y₁=3x+5 и y₂=-2x+1 равна …

Угол между прямыми x-3y+5=0 и 2x+4y-7=0 равен …
  • 45°
  • 30°
  • 90°

Уравнение … является уравнением прямой с угловым коэффициентом
  • (x − 2) / 3 = (y + 1) / 2
  • 3x+2y-5=0
  • y = 2x – 5

Уравнение прямой, проходящей через точки A(2,3) и B(0,5), имеет вид …
  • y=2x-3
  • y=-5x+1
  • y=-x+5

Установите соответствие между способом задания прямой на плоскости и уравнением прямой:
A. Общее уравнение прямой
B. Известны точка M(x₀, y₀) и нормаль n(A, B)
C. Известны точка M(x₀, y₀) и направляющий вектор l(A, B)
D. Ax + By + C = 0
E. A(x − x₀) + B(y − y₀) = 0
F. (x − x₀) / A = (y − y₀) / B


ТЕСТ 6
Если уравнение плоскости задано точкой A(−2, 2, 8) и нормалью n(1, 2, 3), то коэффициент при переменной z в данном уравнении равен …

Координаты середины отрезка с концами в точках A(3,2,5) и В(5,2,7) равны …
  • (4,2,6)
  • (2,3,5)
  • (7,8,9)

Медиана – это прямая, проходящая из вершины A к середине стороны BC. Нужно найти координаты точки M- середины стороны BC. Запишите уравнение прямой, проходящей через две заданные точки A и M.
  • (x + 6) / 3 = (y − 4) / 3 = (z − 3) / −3
  • (x + 9) / 3 = (y − 7) / 3 = (z − 3) / −3
  • (x + 2) / 3 = (y − 1) / 3 = (z − 3) / −3

Плоскости в пространстве называются параллельными, если они ...
  • имеют одну общую точку
  • не имеют общих точек
  • имеют две общие точки

Разность координат нормального вектора плоскости 3x-2y+z-1=0 равна …

Расположите условия взаимного расположения в пространстве прямой, заданной уравнением (x − x₀) / l = (y − y₀) / m = (z − z₀) / n, и плоскости, заданной уравнением Ax + By + Cz + D = 0, в порядке «прямая параллельна плоскости, прямая перпендикулярная плоскости, прямая образует с плоскостью угол α»
1 Al+Bm+Cn=0
2 A / l = B / m = C / n
3 sin α = (Al + Bm + Cn) / (√(A² + B² + C²) ⋅ √(l² + m² + n²))

Расстояние от точки A(3,9,1) до плоскости 2x-y+3z=2 равно …
  • 1/√15
  • 2/√14
  • 3/√15
Сумма координат нормального вектора плоскости 3x-y+2z+1=0 равна …

Сумма координат середины отрезка с концами в точках A(3,2,5) и В(5,2,7) равна …

Уравнение плоскости, проходящей через точки A(-2,2,8), B(4,5,6) и C(2,4,6), имеет вид …
  • x-2y+6=0
  • 2x+2y+3=0
  • x+y+z=0

Установите соответствие между способом задания плоскости в пространстве и ее уравнением:
A. Даны точки M(x₀, y₀, z₀) и нормаль n(A, B, C)
B. Плоскость пересекает оси координат в точках M₁(a, 0, 0), M₂(0, b, 0), M₃(0, 0, c)
C. Известны три точки на плоскости M₁(x₁, y₁, z₁), M₂(x₂, y₂, z₂), M₃(x₃, y₃, z₃)
D. A(x − x₀) + B(y − y₀) + C(z − z₀) = 0
E. x / a = y / b = z / c = 1
F. │(x − x₁, y − y₁, z − z₁), (x − x₂, y − y₂, z − z₂), (x − x₃, y − y₃, z − z₃)│= 0


ИТОГОВЫЙ ТЕСТ

Базисным минором матрицы называется всякий отличный от нуля минор, порядок которого равен … матрицы

Вектор a{4, −8, 11} имеет длину, равную …
  • √201
  • √202
  • √203

Векторное произведение векторов a{1, 2, 3} и b{6, 7, 8} равно …
  • {-7, 10, 6}
  • {-5, 10, -5}
  • {-7, -10, -6}

Всякий вектор на плоскости можно выразить в виде линейной комбинации любых двух … векторов

Говоря о взаимном расположении двух прямых y = 7x-3 и y = (-1/7) x + 3 на плоскости, можно утверждать, что эти прямые …

Дистрибутивность (*) умножения справа относительно сложения матриц выглядит так: …
  • C*(A+B)=C*A+C*B
  • (A+B)*C=A*C+B*C
  • C*(A-B)=C*A-C*B
  • (A-B)*C=A*C-B*C

Для системы уравнений {3x₁ − x₂ = 1, 2x₁ + x₂ = 5, x₁ − 2x₂ = 0 установите соответствие между характеристиками и их значениями:
A. Ранг основной матрицы
B. Ранг расширенной матрицы
C. Количество решений системы
D. 2
E. 3
F. 0

Если вектор a(3, −4, 5) умножить на число 6, тогда сумма координат вектора 6a будет равна …
  • 25
  • 24
  • 26

Если какая-либо строка (столбец) матрицы состоит из одних нулей, то ее определитель равен …

Если уравнение плоскости задано точкой A(−2, 2, 8) и нормалью n(1, 2, 3), то коэффициент при переменной y в данном уравнении равен …

Если элементы двух строк (столбцов) матрицы …, то определитель равен нулю

Каноническое уравнение прямой, проходящей через точки A(-3,2) и B(7,-8), имеет вид …
  • (x + 3) / −10 = (y − 2) / −10
  • (x − 3) / 2 = (y − 2) / 3
  • (x + 3) / 10 = (y − 2) / −10

Координаты середины отрезка с концами в точках A(-3,-2,5) и A(5,2,1) равны …
  • (4,2,6)
  • (1,0,3)
  • (7,8,9)

Косинус угла между прямыми y=-2x+5 и y=2x-2 равен …
  • 0,5
  • 1
  • 0,6

Матрица, дважды транспонированная, равна …
  • обратной матрице
  • исходной матрице
  • транспонированной матрице
  • квадрату транспонированной матрицы

Матрица А называется …, если ее определитель отличен от нуля
  • вырожденной
  • обратной
  • невырожденной

Матрица называется … матрицей, если в каждой ее ненулевой строке имеется такой ненулевой элемент, что все остальные элементы столбца, содержащего этот элемент, равны нулю

Минор элемента матрицы совпадает с алгебраическим дополнением в случае, когда …
  • (i + j) – нечетное число
  • (i + j) – четное число
  • (i + j) = 1

Ордината точки пересечения прямых y₁=2x+1 и y₂=-2x+3 равна …

Переход от матрицы А к новой матрице, в которой строки и столбцы поменялись местами с сохранением порядка, называется … матрицы А

Произведением матриц A = ((2, −5), (−3, 6), (4, 7)) и B = ((−3, 4), (5, −9)) называется матрица C, равная …
  • ((31, −53), (−39, 66), (−23, 47))
  • ((−31, 53), (39, −66), (23, −47))
  • ((25, 66), (−17, 47), (31, −53))
  • ((21, 35), (33, −66), (32, −47))

Произведением матриц A = ((2, −5), (−3, 6), (4, 7)) и B = ((−3, 4), (5, −9)) называется матрица C, равная …
1 ((−7452, 9355), (7484, −9323))
2 ((1076, −1325), (−1060, 1341))
3 ((−148, 195), (156, −187))
4 ((24, −25), (−20, 29))

Прямая, проходящая через основания перпендикуляра и наклонной, называется …
  • диагональю
  • секущей
  • проекцией

Пусть дан вектор a{−3, 7, 2}, тогда длина вектора −4a равна …
  • √992
  • √990
  • √989

Пусть дана матрица A = ((1, −1, 2), (3, 4, −5), (7, −9, −8)), тогда определитель транспонированной матрицы равен
  • -167
  • -175
  • -176

Пусть дана матрица A = ((2, 3, −4), (5, −6, −7), (8, 9, 1)), тогда определитель матрицы равен …

Пусть дана матрица A = ((3, −2), (−1, 5)), тогда вторая степень матрицы A (A²) равна …
  • ((11, −16), (−8, 27))
  • ((9, 4), (1, 25))
  • ((−3, 2), (1, 5))
  • ((9, −4), (1, 25))

Пусть дана система уравнений A = (2x₁ − 3x₂ + x₃ = 5, x₁ + x₂ − 3x₃ = 7, 5x₁ − x₂ + 6x₃ = 1, тогда определитель |A| этой системы равен …
  • 62
  • 63
  • 64

Пусть дана система уравнений A = (2x₁ − 3x₂ + x₃ = 5, x₁ + x₂ − 3x₃ = 7, 5x₁ − x₂ + 6x₃ = 1, тогда определитель |A₁| этой системы равен …
  • 142
  • 143
  • 144

Пусть дана система уравнений A = {2x₁ − 3x₂ + x₃ = 5, x₁ + x₂ − 3x₃ = 7, 5x₁ − x₂ + 6x₃ = 1, тогда определитель |A₂| этой системы равен …
  • -49
  • -48
  • -50

Пусть дана система уравнений A = {2x₁ − 3x₂ + x₃ = 5, x₁ + x₂ − 3x₃ = 7, 5x₁ − x₂ + 6x₃ = 1, тогда определитель |A₃| этой системы равен …
  • -114
  • -115
  • -116

Пусть даны векторы a{2, 3, 4} и b{5, 6, 7}, тогда сумма координат вектора a + b равна …

Разность координат нормального вектора плоскости 2x-y+3z-2=0 равна …

Разностью матриц А и В называется … матрицы А с матрицей, противоположной матрице В

Разностью матриц A = ((7, −3), (2, 0)) и B = ((5, −2), (−3, 8)) является матрица C, равная …
  • ((2, −1), (5, −8))
  • ((2, 1), (5, 5))
  • ((2, −5), (−5, 0))
  • ((2, −8), (−1, 5))

Ранг матрицы при элементарных преобразованиях …
  • меняется
  • не меняется
  • уменьшается
  • увеличивается

Расположите в правильном порядке шаги решения системы уравнений методом Гаусса:
1 составить расширенную матрицу системы
2 с помощью элементарных преобразований привести расширенную матрицу системы к ступенчатому виду
3 на основе полученной ступенчатой матрицы составить и решить систему линейных уравнений

Расположите записи векторных операций в порядке «скалярное произведение векторов, векторное произведение векторов, смешанное произведение векторов»:
1 (a, b)
2 a × b
3 (a × b, c)

Расположите значения миноров M₁₁, M₂₂, M₃₃, M₂₃ матрицы A = ((2, 3, 4), (5, −6, 7), (−8, 9, 0)) в порядке возрастания:
1 M₁₁
2 M₃₃
3 M₂₂
4 M₂₃

Расположите обозначения взаимного расположения прямой l и плоскости α в порядке «прямая пересекает плоскость, прямая перпендикулярна плоскости, прямая параллельна плоскости»:
1 l ∩ α
2 l ⊥ α
3 l ∥ α

Расположите прямые y₁, y₂ и y₃, заданные уравнениями, в порядке возрастания их угловых коэффициентов:
1 y₂=5
2 y₁=7x-2
3 y₃=-x+3

Расстояние от точки A(1, −4) до прямой y = 4/3 x − 4 равно …

Расстояние от точки A(2,4,1) до плоскости 2x-y+3z=2 равно …
  • 1/√14
  • 2/√14
  • 3/√15

Решением системы уравнений A = {2x₁ − 3x₂ + x₃ = 5, x₁ + x₂ − 3x₃ = 7, 5x₁ − x₂ + 6x₃ = 1 будет …
  • ((142/63), (−7/9), (−116/63))
  • ((142/63), (−7/12), (−116/63))
  • ((−142/63), (7/9), (−116/63))

Система линейных уравнений называется … системой линейных уравнений, если все свободные члены в этой системе равны нулю

Скалярное произведение векторов a{2, 5, 7} и b{−3, 4, −9} равно …

Сопоставьте миноры матрицы A = ((2, 3, 4), (5, −6, 7), (−8, 9, 0)) с их значениями:
A. M₁₂
B. M₂₁
C. M₃₂
D. 56
E. -36
F. -6

Сумма координат вектора a = 2i + 3jk равна …

Сумма координат нормального вектора плоскости 2x-y+3z-2=0 равна …

Сумма координат середины отрезка с концами в точках A(-3,-2,5) и A(5,2,1) равна …

Сумма координат точки пересечения прямых y₁=3x+2 и y₂=-2x+3 равна …

Сумма элементов второй строки матрицы, обратной к матрице A = ((2, 3, 1), (0, 1, 0), (3, 1, 1)), равна …

Транспонированная матрица Aᵀ для матрицы A = ((2, −5), (−3, 6), (4, 7)) имеет вид: …
  • ((4, 7), (−3, 6), (2, −5))
  • (−5, 6, 7), (2, −3, 4))
  • ((7, 6, −5), (4, −3, 2))
  • ((2, −3, 4), (−5, 6, 7))

Уравнение … является параметрическим уравнением прямой
  • (x − z) / 3 = (y + 1) / z
  • 3x + 2y − 5 = 0
  • {x = 3t + 1, y = t − 1

Уравнение плоскости, проходящей через точки A(-2,2,8), B(4,0,6) и C(2,0,6), имеет вид …
  • x+y=0
  • y-z+6=0
  • x+y-6=0

Уравнение прямой, проходящей через точки A(-2,-3) и B(-7,-5), имеет вид …
  • y=0,4x+2,2
  • y=0,4x-2,2
  • y=0,4x-3,2

Установите соответствие между понятием и его определением:
A. Нуль-вектор
B. Коллинеарные векторы
C. Длина вектора
D. вектор, начало и конец которого совпадают
E. векторы, лежащие на одной прямой или на параллельных прямых
F. длина соответствующего отрезка

Установите соответствие между способом задания плоскости в пространстве и ее уравнением:
A. Даны тока M(x₀, y₀, z₀) и нормаль n(A, B, C)
B. Вектор l(m, n, p) параллелен плоскости, которая проходит через точки M₁(x₁, y₁, z₁) и M₂(x₂, y₂, z₂)
C. Общее уравнение плоскости с нормальным вектором n(A, B, C)
D. A(x – x₀) + B(y – y₀) + C(z – z₀)
E. |(x – x₁, y – y₁, z – z₁), (x₂ – x₁, y₂ – y₁, z₂ – z₁), (m, n, p)| = 0
F. Ax + By +Cz + D = 0

Установите соответствие между способом задания прямой на плоскости и уравнением прямой:
A. Известны точка M(x₀,y₀) и угловой коэффициент k
B. Известны точки A(x₁,y₁) и B(x₂,y₂)
C. Известны отрезки a и b
D. y = y₀ + k(x − x₀)
E. (x − x₁) / (x₂ − x₁) = (y − y₁) / (y₂ − y₁)
F. x / a + y / b = 1

Числовой множитель можно … за знак транспонирования
  • вносить
  • удалять
  • выносить
  • умножать

Файлы условия, демо

Характеристики ответов (шпаргалок) к зачёту

Учебное заведение
Семестр
Номер задания
Программы
Просмотров
106
Размер
249,75 Kb

Список файлов

Высшая математика. Тесты 1-6, итоговый тест.pdf
Как копировать вопросы во время теста в Синергии?
Картинка-подпись
Каждая купленная работа – это шаг к вашей успешной сдаче и мой стимул делать ещё лучше. Вместе мы создаём круговорот добра в учебе 🥰

Комментарии

Поделитесь ссылкой:
Цена: 500 390 руб.
Расширенная гарантия +3 недели гарантии, +10% цены
Рейтинг покупателей
5 из 5
Поделитесь ссылкой:
Сопутствующие материалы
Вы можете использовать полученные ответы для подготовки к экзамену в учебном заведении и других целях, не нарушающих законодательство РФ и устав Вашего учебного заведения.
Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6294
Авторов
на СтудИзбе
314
Средний доход
с одного платного файла
Обучение Подробнее