Для студентов по предмету Теория вероятностей и математическая статистикаВ первой урне белых и черных шаров, во второй белых и черных. Из первой во вторую переложено К шаров, затем из второй урны извлечен один шарВ первой урне белых и черных шаров, во второй белых и черных. Из первой во вторую переложено К шаров, затем из второй урны извлечен один шар
2023-07-012023-07-01СтудИзба
В первой урне белых и черных шаров, во второй белых и черных. Из первой во вторую переложено К шаров, затем из второй урны извлечен один шар
Описание
Теория вероятностей и математическая статистика из задачника В.Ф. Чудесенко 2005 года, задача №13, вариант 3
В первой урне N1 белых и M1 черных шаров, во второй N2 белых и M2 черных. Из первой во вторую переложено К шаров, затем из второй урны извлечен один шар. Определить вероятность того, что выбранный из второй урны шар – белый.
В первой урне N1 белых и M1 черных шаров, во второй N2 белых и M2 черных. Из первой во вторую переложено К шаров, затем из второй урны извлечен один шар. Определить вероятность того, что выбранный из второй урны шар – белый.

Характеристики решённой задачи
Номер задания
Вариант
Программы
Теги
Просмотров
1
Качество
Идеальное компьютерное
Размер
39,64 Kb
Список файлов
1688203351-65353-ea3b62ed42c89ba29f44460a77447355.pdf