Главная » Все файлы » Просмотр файлов из архивов » PDF-файлы » Ещё одни лекции В.А. Захарова

Ещё одни лекции В.А. Захарова, страница 10

PDF-файл Ещё одни лекции В.А. Захарова, страница 10 Математическая логика и логическое программирование (53257): Лекции - 7 семестрЕщё одни лекции В.А. Захарова: Математическая логика и логическое программирование - PDF, страница 10 (53257) - СтудИзба2019-09-18СтудИзба

Описание файла

PDF-файл из архива "Ещё одни лекции В.А. Захарова", который расположен в категории "". Всё это находится в предмете "математическая логика и логическое программирование" из 7 семестр, которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Просмотр PDF-файла онлайн

Текст 10 страницы из PDF

. . , tk ) : f (k) ∈ Func, t1 , . . . , tk ∈ Hi }.ЭРБРАНОВСКИЕ ИНТЕРПРЕТАЦИИЭрбрановский универсум — это множество всех термов,которые можно построить из констант и функциональныхсимволов заданной сигнатуры. Термы эрбрановскогоуниверсума не содержат переменных и называются основнымитермами .ПримерПусть Const = ∅, Func = {f (1) , g (2) }. Тогдаi = 0 H0 = {c} (эрбрановская константа, т.к.

Const = ∅);i = 1 H1 = {c, f (c), g (c, c)};i = 2 H2 = {c, f (c), g (c, c),f (f (c)), f (g (c, c)), g (f (c), c), g (c, f (c)),g (f (c), f (c)), g (c, g (c, c)), g (g (c, c), c),g (g (c, c), g (c, c)), g (f (c), g (c, c)), g (g (c, c), f (c))};i = 3 и. т. д.ЭРБРАНОВСКИЕ ИНТЕРПРЕТАЦИИОпределение H-интерпретацииЭрбрановская интерпретация IH = Hσ , Const H , Func H , Predсигнатуры σ = Const, Func, Pred состоит изстандартной предметной области — эрбрановскогоуниверсума Hσ ;стандартной оценки констант: Const H (c) = c,т. е.

значением каждого константного символа cявляется его собственное изображение;стандартной оценки функциональных символов:Func H (f (n) ) = f : f(t1 , t2 , . . . , tn ) = f (n) (t1 , t2 , . . . , tn ),т. е. каждый функциональный символ f играет рольконструктора термов эрбрановского универсума;произвольной оценки предикатных символов.Таким образом, разные H-интерпретации отличаются толькоистолкованием предикатных символов.ЭРБРАНОВСКИЕ ИНТЕРПРЕТАЦИИПреимущества эрбрановских интерпретаций.Не нужно заботиться о выборе области интерпретации — увсех H-интерпретаций одна и та же предметная область —H-универсум.Не нужно заботиться об оценке функциональных символов— у всех H-интерпретаций одна и та же стандартнаяоценка Const и Func.И, как будет показано, для проверки противоречивостисистем дизъюнктов достаточно ограничитьсярассмотрением H-интерпретаций.ЭРБРАНОВСКИЕ ИНТЕРПРЕТАЦИИТеорема о H-интерпретацияхСистема дизъюнктов S выполнима тогда и только тогда, когдаS имеет эрбрановскую модель, т.е.

выполнима хотя бы в однойH-интерпретации.Доказательство(⇐) Очевидно.(⇒) Пусть S = {D1 , . . . , DN }, и I = DI , Const I , Func I , Pred I — некоторая модель для S, т. е. для любого дизъюнктаDi = ∀x1 . . . ∀xn (L1i ∨ L2i ∨ · · · ∨ Lki i ) из S и для любогонабора элементов d1 , . . . , dn из DI имеет местоI |= (L1i ∨ L2i ∨ · · · ∨ Lki i )[d1 , .

. . , dn ].Покажем, что существует H-интерпретация JH , в которойвыполняется каждый дизъюнкт Di из S.ЭРБРАНОВСКИЕ ИНТЕРПРЕТАЦИИДоказательствоПусть σ — сигнатура системы дизъюнктов S. Рассмотримэрбрановский универсум Hσ и отображениеα : Hσ → DI ,которое каждому основному терму t ∈ Hσ сопоставляетэлемент α(t) = dt ∈ DI , равный значению терма t винтерпретации I .Оценку Pred H предикатных символов в H-интерпретации Jопределим так:для любого предикатного символа P и любого набора основныхтермов t1 , .

. . , tm ∈ Hσ положимP H (t1 , . . . , tm ) = true ⇐⇒ P I (α(t1 ), . . . , α(tm )) = true.Эта оценка однозначно определяет H-интерпретацию JHЭРБРАНОВСКИЕ ИНТЕРПРЕТАЦИИДоказательствоТогда для любого функционального символа f , предикатногосимвола P и любого набора основных термов t1 , . . . , tm ∈ Hσверноα(f (t1 , .

. . , tm )) = f I (α(t1 ), . . . , α(tm )),JH |= P[t1 , . . . , tm ] ⇐⇒ I |= P[α(t1 ), . . . , α(tm )]Отображение α — это гомоморфизм интерпретации JH винтерпретацию I .Значит, для любого дизъюнкта D = ∀x1 . . . ∀xm (L1 ∨ · · · ∨ Lk )и любого набора основных термов t1 , . . . , tm ∈ Hσ верноJH |= (L1 ∨ · · · ∨ Lk )[t1 , . . . , tm ]I |= (L1 ∨ · · · ∨ Lk )[α(t1 ), .

. . , α(tm )]⇐⇒ЭРБРАНОВСКИЕ ИНТЕРПРЕТАЦИИДоказательствоИтак, для любого дизъюнктаDi = ∀x1 . . . ∀xn (L1i ∨ L2i ∨ · · · ∨ Lki i ) из S и любого набораосновных термов t1 , . . . , tn ∈ Hσ имеемJH |= (L1i ∨ L2i ∨ · · · ∨ Lki i )[t1 , . . . , tn ]I |= (L1i ∨ L2i ∨ · · · ∨ Lki i )[α(t1 ), . . . , α(tn )].⇐⇒ПосколькуI |= (L1i ∨ L2i ∨ · · · ∨ Lki i )[α(t1 ), . . . , α(tn )],все дизъюнкты из S выполнимы в построенной эрбрановскойинтерпретации JH .ЭРБРАНОВСКИЕ ИНТЕРПРЕТАЦИИСледствиеСистема дизъюнктов S противоречива тогда и только тогда,когда S невыполнима ни в одной эрбрановской интерпретации.Значит, для проверки противоречивости систем дизъюнктовдостаточно исследовать только эрбрановские интерпретации.ЭРБРАНОВСКИЕ ИНТЕРПРЕТАЦИИКак задавать H-интерпретации?Эрбрановские интерпретации полностью определяются оценкойпредикатных символов.

Значит, достаточно указать оценку всехпредикатных символов.Пусть P (m) ∈ Pred, и t1 , . . . , tm ∈ Hσ — набор основных термов.Тогда формула P (m) (t1 , . . . , tm ) называется основным атомом .Множество всех основных атомов называется эрбрановскимбазисом и обозначается BH .Всякая H-интерпретация I задается подмножеством B Iистинных основных атомов:B I = {P (m) (t1 , . . . , tm ) : I |= P (m) (t1 , . . . , tm ), {t1 , .

. . , tm } ⊆ H}.ЭРБРАНОВСКИЕ ИНТЕРПРЕТАЦИИПримерыB I = ∅ соответствует интерпретации I , в которой все Pтождественно ложны.I |= P (m) [t1 , . . . , tm ] ⇐⇒ P (m) (t1 , . . . , tm ) ∈ ∅.B I = BH соответствует интерпретации I , в которой все Pтождественно истинны.Пересечение B I1 ∩ B I2 задает интерпретацию, в которойистинны те и только те отношения, которые истинны вобоих интерпретациях I1 и I2 .Значит, это очень удобный способ задания интерпретаций,позволяющий проводить над нимитеоретико-множественные операции.В дальнейшем все H-интерпретации мы будем ассоциировать сподмножествами эрбрановского базиса BH .ТЕОРЕМА ЭРБРАНАВернемся к системам дизъюнктовПусть имеется дизъюнкт D = ∀x1 .

. . ∀xm (L1 ∨ · · · ∨ Lk ) и наборосновных термов t1 , . . . , tm из эрбрановского универсума Hσ .Тогда дизъюнкт D = (L1 ∨ · · · ∨ Lk ){x1 /t1 , . . . , xm /tm },полученный из D подстановкой основных термов t1 , . . . , tmвместо всех переменных дизъюнкта D называется основнымпримером дизъюнкта D.ПримерD = ∀x1 ∀x2 (¬R(x1 , x2 ) ∨ P(h(x1 ))) — дизъюнкт,D = ¬R(g (c ), c ) ∨ P(h(g (c ))) = D{x1 /g (c ), x2 /c } —основной пример.ТЕОРЕМА ЭРБРАНАСистема дизъюнктов S = {D1 , D2 , .

. . , DN } противоречива⇐⇒для каждой H-интерпретации I в S найдется такой дизъюнктDi = (L1i ∨ L2i ∨ · · · ∨ Lki i ) и такой набор основных термовt1 , . . . , tm , для которых имеют местоI |= (L1i ∨ L2i ∨ . . . Lki i )[t1 , . . . , tm ]⇐⇒для каждой H-интерпретации I существует основной примерD = Di {x1 /t1 , . . .

, xm /tm } дизъюнкта из системы S, длякоторогоI |= D .ТЕОРЕМА ЭРБРАНАРассмотрим множество основных примеров дизъюнктовGS= {D : D — основной пример дизъюнкта из S,существует эрбрановская интерпретация I ⊆ BH :I |= D }.Тогда система дизъюнктов S противоречива⇐⇒система основных примеров GS противоречива.ТЕОРЕМА ЭРБРАНАВспомним теорему компактности МальцеваМножество замкнутых формул T имеет модель тогда и толькотогда, когда каждое конечное подмножество T , T ⊆ T ,имеет модель.Таким образом, множество основных примеров дизъюнктов GSпротиворечиво⇐⇒существует конечное противоречивое подмножество G ,G ⊆ GS .И в результате проведенных рассуждений мы приходим кТеореме Эрбрана.ТЕОРЕМА ЭРБРАНАТеорема ЭрбранаСистема дизъюнктов S = {D1 , .

. . , DN } противоречива⇐⇒существует конечное противоречивое множество G основных примеров дизъюнктов системы S.В чем состоит главная особенность теоремы Эрбрана?Основной пример дизъюнкта не содержит предметныхпеременных, и поэтому является простой булевой формулойТаким образом проблема общезначимости формул логикипредикатов (сложная проблема!!!) сводится к проблемевыполнимости булевой формулы (простой проблеме??!!).ТЕОРЕМА ЭРБРАНАМаленькое лукавство.Увы, теорема Эрбрана не сообщает нам ничего о том, КАКИЕосновные примеры дизъюнктов образуют это противоречивоемножество G .Нам нужно придумать механизм поиска этого противоречивогомножества G .Дэвис и Патнем предложили использовать компьютер дляперебора всех эрбрановских интерпретаций в поискепротиворечивой системы основных примеров дизъюнктов.

НоДж. Робинсон поступил хитрее...Из дизъюнктов системы S нужно устранять потенциальныепротиворечия, пока не будут устранены все источникипротиворечия или не будет получено неустранимое (явное)противоречие.ТЕОРЕМА ЭРБРАНАЕсли в системе S содержатся дизъюнкты D1 = L и D2 = ¬L,то, очевидно, S противоречива (явное противоречие).А если в S есть дизъюнкты D1 = D1 ∨ L и D2 = D2 ∨ ¬L, тоI |= D1 и I |= D2 влечет I |= D1 ∨ D2 . Значит, добавлениедизъюнкта D0 = D1 ∨ D2 к S не нарушает ее выполнимости.Зато устраняется потенциальное противоречие L и ¬L.Правило вывода, разрешающее противоречия,D1 ∨ L, D2 ∨ ¬LD1 ∨ D2называется правилом резолюции .

Это правило можноприменять до тех пор, пока не возникнет неустранимоепротиворечие D1 = L и D2 = ¬L. Это и будет служитьпризнаком противоречивости системы S.ТЕОРЕМА ЭРБРАНАНу, а если D1 = P(x) и D2 = ¬P(f (y )), то как быть тогда?Ведь здесь нет явного противоречия.Противоречие здесь скрытое. Дизъюнкты D1 и D2 имеютосновные примерыP(f (c)) = D1 {x/f (c)} и ¬P(f (c)) = D2 {y /c},которые образуют противоречие. Значит, D1 и D2 тожепротиворечивы. Но как отыскать это скрытое противоречие?Нужно постараться привести литеры P(x) и P(f (y )) к общемувиду.

Приведение выражений к общему виду называетсяунификацией .Нам нужен алгоритм унификации!ЗАДАЧА УНИФИКАЦИИПриведение двух атомов A и A к общему виду достигаетсяприменением такой подстановки θ, для которой A θ = A θ.Значит, для решения задачи унификации придется изучитьалгебраические свойства подстановок.ВоспоминанияПодстановка — это отображение θ : Var → Term.Конечная подстановка θ = {x1 /t1 , x2 /t2 , . . . , xn /tn }.E θ — применение подстановки θ к выражению E .ЗАДАЧА УНИФИКАЦИИКомпозиция подстановокПусть θ, η ∈ Subst. Композиция подстановок θη — этоподстановка μ, которая определяется следующимсоотношением:μ(x) = (xθ)η для любой x ∈ Var .УтверждениеПусть θ = {x1 /t1 , . . .

, xn /tn }, η = {y1 /s1 , . . . , ym /sm }. Тогдаподстановкаμ = {x1 /t1 η, . . . , xn /tn η} ∪{yi /si : yi ∈/ {x1 , x2 , . . . , xn }} −{xj /tj η : xj = tj η}.является композицией θη.ЗАДАЧА УНИФИКАЦИИДоказательствоμ = {x1 /t1 η, . . . , xn /tn η} ∪{yi /si : yi ∈/ {x1 , x2 , . . . , xn }} −{xj /tj η : xj = tj η}.Рассмотрим произвольную z ∈ Var . Возможны 3 варианта.1. z = xj ∈ Domθ . Тогда z(θη) = (xj θ)η = tj η.Если tj η = xj , то xj ∈ Domμ , и xj μ = tj η./ Domμ , и xj μ = xj .Если tj η = xj , то xj ∈В любом случае xi (θη) = xi μ.2. z = yi ∈ Domη \ Domθ . Тогда z(θη) = (yi θ)η = yi η = si ,и zμ = si ./ Domη ∪ Domθ .

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5142
Авторов
на СтудИзбе
441
Средний доход
с одного платного файла
Обучение Подробнее