Главная » Все файлы » Просмотр файлов из архивов » PDF-файлы » 24. Арифметика Пеано. Теорема Геделя о неполноте

24. Арифметика Пеано. Теорема Геделя о неполноте (В.А. Захаров - Лекции), страница 3

PDF-файл 24. Арифметика Пеано. Теорема Геделя о неполноте (В.А. Захаров - Лекции), страница 3 Математическая логика и логическое программирование (53081): Лекции - 7 семестр24. Арифметика Пеано. Теорема Геделя о неполноте (В.А. Захаров - Лекции) - PDF, страница 3 (53081) - СтудИзба2019-09-18СтудИзба

Описание файла

Файл "24. Арифметика Пеано. Теорема Геделя о неполноте" внутри архива находится в папке "В.А. Захаров - Лекции". PDF-файл из архива "В.А. Захаров - Лекции", который расположен в категории "". Всё это находится в предмете "математическая логика и логическое программирование" из 7 семестр, которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Просмотр PDF-файла онлайн

Текст 3 страницы из PDF

. , n̄k ) .Формальная арифметикаНумералы и арифметизуемые отношенияТеорема Геделя–Тьюринга.Отношение P (k) на множестве натуральных чиселарифметизуемо в том и только том случае, если существуеттакая машина Тьюринга M , которая для любого наборанатуральных чисел (n1 , n2 , . . . , nk ) имеет завершающеесявычисление, преобразующее начальную конфигурациюq1 11. . . 1} 0 11. . . 1} 0 . . .

0 11. . . 1}| {z| {z| {zn1 +1 раз n2 +1 разnk +1 разIв заключительную конфигурацию q0 1 , еслиP (k) (n1 , n2 , . . . , nk ) = true ,Iв заключительную конфигурацию q0 0 , еслиP (k) (n1 , n2 , . . . , nk ) = false .Формальная арифметикаНумерация ГеделяЗакодируем натуральными числами (занумеруем) символыалфавита формальной арифметики, формулы и конечныепоследовательности формул.gn(0) = 3, gn(s) = 5, gn(+) = 7, gn(×) = 9, gn(=) = 11,gn(¬) = 13, gn(&) = 15, gn(∨) = 17, gn(→) = 19,gn(∀) = 21, gn(∃) = 23,gn( ) = 25, gn( ) = 27,gn(x1) = 29, gn(x2) = 31, .

. . , gn(xi) = 27 + 2i, . . . .Геделев номер слова:gn(a )gn(a1 a2 a3 . . . an) = 2gn(a1) 3gn(a2) 5gn(a3) . . . pn n .Геделев номер последовательности слов:gn(α )gn(α1 α2 α3 . . . αm) = 2gn(α1) 3gn(α2) 5gn(α3 . . . pm m .Формальная арифметикаПримеры арифметизуемых отношенийРассмотрим два отношения1. Form(1) : Form(n) = true ⇐⇒ n — геделев номерформулы арифметики Пеано.2. Proof(2) : Proof(n, m) = true ⇐⇒ n — геделев номернекоторой формулы ϕ арифметики Пеано, а m — геделевномер конечной последовательности формул,составляющей доказательство формулы ϕ .ЛеммаОтношения Form и Proof арифметизируемы.Обозначим Proof арифметическую формулу, реализующуюпредикат Proof .Формальная арифметикаСтранные предикатыНу, если вы поверили, что предикат Proof(2) арифметизуем, тосовершенно очевидно, что арифметизуемым является и такойстранный предикат MetaProof(2) :MetaProof(n, m) = truemn — геделев номер некоторой формулы арифметики Пеано,ϕ(x) , зависящей от одной переменной,а m — геделев номер конечной последовательности формул,составляющей доказательство формулы ϕ(n̄) .Но если предикат MetaProof(2) арифметизуем, то существуетарифметическая формула W(x, y ) , выражающая отношениеMetaProof .Формальная арифметикаСтранные предикатыРассмотрим формулу ϕ(x) = ¬∃y W(x, y ) и ее геделев номерn0 = gn(ϕ(x)) .Интересно, а что за высказывание выражает замкнутаяформула ϕ(n̄0 ) ?Это высказывание таково: Нельзя доказать формулу ϕ(n̄0 ) ,т.

е. формула ϕ(n̄0 ) утверждает, что она недоказуема.Таким образом, мы имеем дело со строго сформулированныманалогом «парадокса лжеца».И если эта формула действительно не имеет доказательства варифметике Пеано, то она выражает истинное суждение.Теорема Геделя о неполноте PA(облегченный вариант)Если множество натуральных чисел с операциями сложения иумножения (N0 , +, ×) является моделью для аксиом PA, то PAнеполна.Доказательство.1. Покажем, что PA 6` ϕ(n̄0 ) .Допустим противное PA ` ϕ(n̄0 ) .

Тогда формула ϕ(n̄0 ) имеетдоказательство в PA: ψ1 , ψ2 , . . . , ψN = ϕ(n̄0 ).Пусть m = gn(ψ1 , ψ2 , . . . , ψN ) . Тогда MetaProof (n0 , m) = true .Поэтому, учитывая арифметизуемость предиката MetaProof ,получаем PA ` W(n̄0 , m̄) . Но это означает, чтоPA ` ∃y W(n̄0 , y ) и, следовательно, PA ` ¬ϕ(n̄0 ) .Но это означает, что PA — противоречивая теория, вопрекиусловию теоремы (PA имеет модель).Теорема Геделя о неполноте PA(облегченный вариант)Если множество натуральных чисел с операциями сложения иумножения (N0 , +, ×) является моделью для аксиом PA, то PAнеполна.Доказательство.2. Покажем, что PA 6` ¬ϕ(n̄0 ) .Допустим противное PA ` ¬ϕ(n̄0 ) , т.

е. PA ` ∃y W(n̄0 , y ) .Тогда (почему?) существует такое натуральное число m, длякоторого верно PA ` W(n̄0 , m̄) . Учитывая, что формула Wвыражает отношение MetaProof , приходим к выводу: m — этогеделев номер доказательства формулы ϕ(n̄0 ) в PA. Значит,PA ` ϕ(n̄0 ) .Но это означает, что PA — противоречивая теория, вопрекиусловию теоремы (PA имеет модель).Теорема Геделя о неполноте PA(облегченный вариант)Если множество натуральных чисел с операциями сложения иумножения (N0 , +, ×) является моделью для аксиом PA, то PAнеполна.Доказательство.3.

Итак,PA 6` ϕ(n̄0 )PA 6` ¬ϕ(n̄0 ) .Значит, ϕ(n̄0 ) = ¬∃y W(n̄0 , y ) — это истинное арифметическоеутверждение, которое нельзя ни доказать, ни опровергнуть варифметике Пеано.Значит, арифметика Пеано неполна.Теорема Геделя о неполноте PA(Основной вариант)Пусть запись Consist обозначает арифметическую формулу¬∃X Proof (gn(0 = s(0)), X )Если формальная арифметика PA непротиворечива, тоPA `6ConsistPA `6¬Consist.Это означает, что аксиоматические теории (сколь бывыразительны они ни были) не позволяют построитьдоказательство их собственной непротиворечивости.КОНЕЦ ЛЕКЦИИ 18.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5138
Авторов
на СтудИзбе
443
Средний доход
с одного платного файла
Обучение Подробнее