Резюме (Рефлективные гиперболические решётки), страница 3

PDF-файл Резюме (Рефлективные гиперболические решётки), страница 3 Физико-математические науки (41967): Диссертация - Аспирантура и докторантураРезюме (Рефлективные гиперболические решётки) - PDF, страница 3 (41967) - СтудИзба2019-05-20СтудИзба

Описание файла

Файл "Резюме" внутри архива находится в папке "Рефлективные гиперболические решётки". PDF-файл из архива "Рефлективные гиперболические решётки", который расположен в категории "". Всё это находится в предмете "физико-математические науки" из Аспирантура и докторантура, которые можно найти в файловом архиве НИУ ВШЭ. Не смотря на прямую связь этого архива с НИУ ВШЭ, его также можно найти и в других разделах. , а ещё этот архив представляет собой кандидатскую диссертацию, поэтому ещё представлен в разделе всех диссертаций на соискание учёной степени кандидата физико-математических наук.

Просмотр PDF-файла онлайн

Текст 3 страницы из PDF

The faces F3 and F4 are called the framing edges of the edge E, and thenumber |(u3 , u4 )| is its width.We associate with the edge E the set ᾱ = (α12 , α13 , α23 , α14 , α24 ), where αi j is the anglebetween the faces Fi and F j .Theorem 4. The fundamental polyhedron of every Q-arithmetic cocompact group ofreflections in H3 has an edge of width less than 4.14.In fact, a stronger result is obtained.

Namely, it is proved that there is an edge of widthtᾱ , where tᾱ ≤ 4.14 is a number depending on the set ᾱ of dihedral angles around this edge.To obtain this result, the following method is used. Let P be the fundamental polytope ofa Q-arithmetic cocompact reflection group in H3 . Following Nikulin, we consider a point Oinside the polyhedron P. Let E be the outermost2 edge from it. We denote the vertices of theedge E by V1 and V2 , and the dihedral angles between the faces Fi and F j will be denoted byαi j .Let E1 and E3 be the edges of the polytope P outgoing from the vertex V1 and let E2 andE4 be the edges outgoing from V2 such that the edges E1 and E2 lie in the face F1 . The length8Fig.

1. The outermost edgeof the edge E is denoted by a, and the plane angles between the edges E j and E are denotedby α j (see Figure 1).The following result is true for an arbitrary compact acute-angled polytope in H3 .Theorem 5. The length of the outermost edge satisfies the inequality tanh(ln(ctg( α12 )))  tanh(ln(ctg( α12 )))  . + arcsinh (α ) 4(α ) 4a < arcsinh 3tan 2tan 24Then it remains to estimate, by using a linear inequality, the width of the edge through itslength. To do this, we use the fact that we initially considered the fundamental polyhedronof the Q-arithmetic cocompact reflection group in H3 . As we see, the estimates in Theorem5 depend on the set of angles around this edge, therefore, the estimates for the width of theedge also depend on it.To formulate the results of classification of stably reflective lattices we introduce somenotation for hyperbolic lattices:• [C] is a quadratic lattice whose inner product in some basis is given by a symmetricmatrix C,• d(L) := det C is the discriminant of the lattice L = [C],• L ⊕ M is the orthogonal sum of the lattices L and M,• [k]L is the quadratic lattice obtained from L by multiplying all inner products by k ∈ A.is the adjoint lattice.2In an acute-angled polyhedron the distance from an interior point to a face (of any dimension) is equal tothe distance to the plane of this face.9Theorem 6.

Any stably reflective anisotropic hyperbolic lattice of rank 4 over Z is either isomorphic to [−7] ⊕ [1] ⊕ [1] ⊕ [1] or [−15] ⊕ [1] ⊕ [1] ⊕ [1], or to an even index 2 sublatticeof one of them.Actually, these lattices are even 2-reflective (see [42]).√Chapter 5. Stably reflective Z[ 2]-lattices of rank 4√Theorem 7. The fundamental polyhedron of any Q[ 2]-arithmetic group of reflectionsin H3 has an edge of width less than 4.14.As above, actually a stronger result is obtained. Namely, it is proved that there is an edgeof width tᾱ , where tᾱ ≤ 4.14 is a number depending on the set ᾱ of dihedral angles around thisedge.√Theorem 8.

Any maximal stably reflective hyperbolic lattice of rank 4 over Z[ 2] isisomorphic to one of the following seven lattices:№1234567L√[−1 − 2] ⊕ [1] ⊕ [1] ⊕ [1]√[−1 − 2 2] ⊕ [1] ⊕ [1] ⊕ [1]√[−5 − 4 2] ⊕ [1] ⊕ [1] ⊕ [1]√[−11 − 8 2] ⊕ [1] ⊕ [1] ⊕ [1]√[− 2] ⊕ [1] ⊕ [1] ⊕ [1]√  2−1−√ 2 2 −√1 ⊕ [1] −1√2 √− 22−1 2− 2√[−7 − 5 2] ⊕ [1] ⊕ [1] ⊕ [1]# faces565176Discriminant√−1 − 2√−1 − 2 2√−5 − 4 2√−11 − 8 2√− 26√− 25√−7 − 5 2Approbation of the workThe results of the thesis have been reported at the following meetings:• the seminar “Lie groups and invariant theory”, led by E.B.

Vinberg, D.A. Timashev andI.V. Arzhantsev, the Faculty of Mechanics and Mathematics, Moscow State University,May 2016 and October 2017;• the Sixth School-Conference “Lie Algebras, Algebraic Groups and Invariant Theory”,MSU & IUM, Moscow, Russia, January–February 2017;• S.P. Novikov’s Seminar “Geometry, topology and mathematical physics”, the Faculty ofMechanics and Mathematics, Moscow State University, March 2017;• the international conference “Geometry and Topology” in honor of C. Bavard, Instituteof Mathematics, Bordeaux, France, November 2017;• the seminar “Hyperbolic geometry and combinatorial structures”, Institute of Mathematics, Neuchatel, Switzerland, November 2017;10• the seminar “Automorphic forms and their applications”, led by V.A. Grytsenko, theFaculty of Mathematics, HSE, Moscow, Russia, February 2018;• the international conference “Automorphic forms and algebraic geometry”, PDMI SteklovInstitute of RAS, St.

Petersburg, Russia, May 2018.References[1] Ian Agol, Finiteness of arithmetic Kleinian reflection groups. In Proceedings of the International Congress of Mathematicians: Madrid, August 22–30, 2006: invited lectures,pages 951–960, 2006.[2] Ian Agol, Mikhail Belolipetsky, Peter Storm, and Kevin Whyte. Finiteness of arithmetichyperbolic reflection groups. — Groups Geom. Dyn., 2008, Vol. 2(4), p. 481 — 498.[3] D. Allcock.

“Infinitely many hyperbolic Coxeter groups through dimension 19”, Geom.Topol. 10 (2006), 737–758.[4] D. Allcock. The reflective Lorentzian lattices of rank 3. — Mem. Amer. Math. Soc. 220,no 1033., American Mathematical Society, 2012, p. 1 — 125.[5] E. M. Andreev. Convex polyhedra in Lobachevski spaces. Mat.

Sb, 1970, 81, p. 445–478.[6] E. M. Andreev. Convex polyhedra of finite volume in Lobachevski space. Mat. Sb. , 1970,83, p. 256–260.[7] M. Belolipetsky. Arithmetic hyperbolic reflection groups. — Bulletin (New Series) of theAmer. Math. Soc., 2016, Vol. 53 (3), p. 437 — 475.[8] N. V. Bogachev. Reflective anisotropic hyperbolic lattices of rank 4.

ArXiv: https://arxiv.org/abs/1610.06148v1[9] N. Bogachev, A. Perepechko, Vinberg’s algorithm, DOI:10.5281/zenodo.1098448,https://github.com/aperep/vinberg-algorithm, 2017.[10] N. V. Bogachev, Classification of (1,2)-Reflective Anisotropic Hyperbolic Lattices ofRank 4 — Izvestiya Mathematics, 2019, Vol. 81:1, p. 3–24.[11] Armand Borel and Harish-Chandra. Arithmetic subgroups of algebraic groups. Ann. ofMath. (2), 75:485–535, 1962.[12] R.

Borcherds, Automorphism groups of Lorentzian lattices, J. Algebra 111 (1987), 133–153.[13] V. O. Bugaenko.√Groups of automorphisms of unimodular hyperbolic quadratic formsover the ring Z[( 5 + 1)/2]. Vestnik Moskov. Univ. Ser. I Mat. Mekh., (5):6–12, 1984.[14] V. O. Bugaenko. On reflective unimodular hyperbolic quadratic forms. Selecta Math.Soviet., 9(3):263–271, 1990. Selected translations.11[15] V. O. Bugaenko. Arithmetic crystallographic groups generated by reflections, and reflective hyperbolic lattices. — Advances in Soviet Mathematics, 1992, Volume 8, p.

33 —55.[16] Б. А. Венков. Об арифметической группе автоморфизмов неопределеннойквадратичной формы. — Изв. АН СССР, 1937, том 1, выпуск 2, стр. 139–170[17] R. Guglielmetti. Hyperbolic isometries in (in-)finite dimensions and discrete reflectiongroups: theory and computations. — Switzerland, PhD Thesis, University of Fribourg,2017.[18] Frank Esselmann. Über die maximale Dimension von Lorentz-Gittern mit coendlicherSpiegelungsgruppe. — Journal of Number Theory, 1996, Vol. 61, p. 103 — 144.[19] H.

S. M. Coxeter. Discrete groups generated by reflections, — Ann. of Math. (2), 35:3(1934), 588–621.[20] A.G. Khovanskii, Hyperplane sections of polyhedra, toroidal manifolds, and discretegroups in Lobachevskii space, Functional Analysis and Its Applications 20 (1986), no. 1,p. 41–50.[21] D.D. Long, C. Maclachlan, and A.W. Reid. Arithmetic fuchsian groups of genus zero.Pure and Applied Mathematics Quarterly, 2(2):569–599, 2006.√[22] A.

Mark. The classification of rank 3 reflective hyperbolic lattices over Z[ 2] — Mat.Proc. Camb. Phil. Soc. 12, 2016, p. 1–37.√[23] A. Mark. The classification of rank 3 reflective hyperbolic lattices over Z[ 2], Ph.D. thesis, University of Texas at Austin, 2015.[24] G.

D. Mostow and T. Tamagawa. On the compactness of arithmetically defined homogeneous spaces. Ann. of Math, 1962, Vol.76, No. 3, pp. 446–463.[25] V. V. Nikulin. Quotient-groups of groups of automorphisms of hyperbolic forms of subgroups generated by 2-reflections. Dokl. Akad. Nauk SSSR 1979, Vol. 248, N. 6, p. 1307–1309.[26] V. V. Nikulin. On the arithmetic groups generated by reflections in Lobachevski spaces.Izv. Akad. Nauk SSSR Ser.

Mat., 1980, Vol. 44, N 3, p. 637–669.[27] V. V. Nikulin. Quotient-groups of groups of automorphisms of hyperbolic forms by subgroups generated by 2-reflections. Algebro-geometric applications. In Current problemsin mathematics, Vol.

18, p. 3–114. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn.Informatsii, Moscow, 1981[28] V. V. Nikulin. On the classification of arithmetic groups generated by reflections inLobachevski spaces. Izv. Akad. Nauk SSSR Ser. Mat., 45(1): p. 113–142, 240, 1981.[29] V. V. Nikulin. K3 surfaces with a finite group of automorphisms and a Picard groupof rank three. Trudy Mat. Inst. Steklov., 165:119–142, 1984. Algebraic geometry and itsapplications.12[30] V. V. Nikulin. On the classification of hyperbolic root systems of rank three.

Tr. Mat.Inst. Steklova, 230:256, 2000.[31] V. V. Nikulin. Finiteness of the number of arithmetic groups generated by reflections inLobachevski spaces. Izv. Ross. Akad. Nauk Ser. Mat., 71(1): p. 55–60, 2007.[32] H. Poincare . Theorie des groupes fuchsiennes.— Acta math., 1882, 1, p. 1—62.[33] M.

N. Prokhorov. Absence of discrete groups of reflections with a noncompact fundamental polyhedron of finite volume in a Lobachevski space of high dimension. Izv. Akad.Nauk SSSR Ser. Mat., 50(2): p. 413–424, 1986.[34] Rudolf Scharlau.

On the classification of arithmetic reflection groups on hyperbolic 3space. — Preprint, Bielefeld, 1989.[35] R. Scharlau, C. Walhorn. Integral lattices and hyperbolic reflection groups. — Asterisque. 1992, V.209, p. 279–291.[36] Ivica Turkalj. Reflective Lorentzian Lattices of Signature (5, 1). — Dissertation, 2017,Technische Universität Dortmund.[37] E. B. Vinberg. Discrete groups generated by reflections in Lobachevski spaces.

Mat. Sb.,1967, Vol. 72(114), N 3, p. 471 — 488.[38] E. B. Vinberg. The groups of units of certain quadratic forms. Mat. Sb., 1972, Vol. 87, p.18 — 36[39] È. B. Vinberg, On unimodular integral quadratic forms, Funct. Anal. Appl., 6:2 (1972),p. 105–111[40] E. B. Vinberg. Some arithmetical descrete groups in Lobachevskii spaces. — In: Proc.Int. Coll. on Discrete Subgroups of Lie Groups and Appl. to Moduli (Bombay, January1973). — Oxford: University Press, 1975, p. 323 — 348.[41] E. B. Vinberg.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5193
Авторов
на СтудИзбе
433
Средний доход
с одного платного файла
Обучение Подробнее