Диссертация (Isomonodromic deformations and quantum field theory), страница 7

PDF-файл Диссертация (Isomonodromic deformations and quantum field theory), страница 7 Физико-математические науки (41863): Диссертация - Аспирантура и докторантураДиссертация (Isomonodromic deformations and quantum field theory) - PDF, страница 7 (41863) - СтудИзба2019-05-20СтудИзба

Описание файла

Файл "Диссертация" внутри архива находится в папке "Isomonodromic deformations and quantum field theory". PDF-файл из архива "Isomonodromic deformations and quantum field theory", который расположен в категории "". Всё это находится в предмете "физико-математические науки" из Аспирантура и докторантура, которые можно найти в файловом архиве НИУ ВШЭ. Не смотря на прямую связь этого архива с НИУ ВШЭ, его также можно найти и в других разделах. , а ещё этот архив представляет собой кандидатскую диссертацию, поэтому ещё представлен в разделе всех диссертаций на соискание учёной степени кандидата физико-математических наук.

Просмотр PDF-файла онлайн

Текст 7 страницы из PDF

Therefore one can say thatMg4 (θ 1 , θ 2 ; σ; θ 3 , θ 4 )/H = Mg3 (θ 1 , θ 2 , −σ) × Mg3 (σ, θ 3 , θ 4 ) .(2.23)The torus action is free, so locally it looks as a product (actually it is true evenglobally because the fibration (M1 , M2 , M3 ) 7→ (M1 , M2 , M3 )/G is trivial: we cangive an algebraic parametrization for one representative from each conjugacy class).Therefore we have the equality for the open subsets (denoted by ≈):Mg4 (θ 1 , θ 2 ; σ; θ 3 , θ 4 ) ≈ Mg3 (θ 1 , θ 2 , −σ) × H × Mg3 (σ, θ 3 , θ 4 ) .(2.24)The above considerations suggest the following choice of coordinates on Mg4 :• Gluing parameters σ: rank g items.• Invariant functions on Mg3 × Mg3 (for example, tr M1 M2−1 , tr M3−1 M4 ).

Theyare invariant with respect to the action of “relative twists”: we have 2 dim Mg3such functions.• Relative twist parameters, which change under the twist (for example, tr M2 M3−1 ,tr M2−1 M3 ), rank g items. These coordinates will be denoted by β ∈ h.This procedure is schematically depicted in Fig.4.6 for the sl3 case, where dim M3sl3 =2, dim Msl4 3 = 8. The coordinates on each copy of Msl3 3 are denoted by µ, ν.

Theindices {1, 2, 3, 4} of the matrices are replaced by {0, t, 1, ∞}Figure 2.1: Coordinates on Msl4 3 : eight = two σ’s + two β’s + µ0t + ν0t + µ1∞ + ν1∞Pants decomposition for MgnSuppose that the coordinates on Mgn−1 are chosen via the pants decomposition. Splitthe matrices into two groups and defineSn−3 = M1 . . . Mn−2 ,−1Mgn = {(M1 , . . . , Mn−2 , Sn−3), (Sn−3 , Mn−1 , Mn )}/G == {(M1 , . . . , Mn−2 , e−2πiσ ), (e2πiσ , Mn−1 , Mn )}/H ≈ Mgn−1 × H × Mg3 .(2.25)Iteratively repeating this procedure, one is led to the following choice of coordinateson Mgn :212. Isomonodromic τ -functions and WN conformal blocks• (n − 3) rank g gluing parameters σ i ,• (n − 3) rank g relative twist parameters β i ,•n−2Pdim Mg3 (σ i−1 , θ i+1 , −σ i ) 3-point moduli of flat connections (here we identifyi=1σ 0 = θ 1 and σ n−2 = −θ n ).Anticipating the result, let us mention that these coordinates are convenient fromthe CFT point of view: σ i will parametrize intermediate charges in the conformalblock and β i will be the Fourier transformation parameters.

This description wasshown to be valid in the sl2 case [GIL12], [ILTe] and was recently demonstrated tohold for slN case with dim Mg3 = 0 [GavIL]. From a more conceptual point of view,this decomposition illustrates that all extra parameters in the τ -function expansioncome from the 3-point functions.Iterative solution of the Schlesinger systemIn order to study the generic Schlesinger system, let us follow the approach proposedin the original paper of M. Jimbo [Jimbo] and in [SMJ, part 2].Let us take the 4-point Schlesinger system and fix the singularities to be 0, t, 1, ∞.The system becomest∂t A0 = [At , A0 ] ,t[At , A1 ] ,t∂t A1 =t−111[At , A1 ] .∂t At = − [At , A0 ] −tt−1(2.26)Fixing the integral of motion A∞ = −A0 − At − A1 , one obtainst∂t A0 = [A0 , A1 + A∞ ] ,t∂t A1 = t(1 − t)−1 [A0 + A∞ , A1 ] .(2.27)The isomonodromic τ -function is defined by∂t log τ =11tr At A0 +tr At A1 .tt−1(2.28)Let us study the solution of the system (2.27) for the case when A1 (t) is finite inthe limit t → 0: A1 (t) = A1 (0) + O(t>0 ).

Under this assumption we havet∂t A0 (t) = [A0 , A∞ + A1 (0) + O(t>0 )] .If the last term were absent, then the solution would be A0 = t−A∞ −A1 (0) Ã0 tA∞ +A1 (0) .Therefore it is natural to introduceB = −A1 (0) − A∞ = lim(A0 (t) + At (t)) ,t→0−BÃ0 (t) = t22A0 (t)tB ,(2.29)2.3. Iterative solution of the Schlesinger systemwhere Ã0 (t) has a well-defined limit as t → 0.

We see that in view of its definitionB describes the total monodromy around 0 and t in the limit t → 0. Since thedeformation is isomonodromic, this monodromy is constant and is given by M0 Mt =M0t ∼ e2πiB . This allows to make the identificationB = σ.(2.30)Our system then becomest∂t Ã0 (t) = [Ã0 (t), t−σ (A1 (t) − A1 (0))tσ ] ,t∂t A1 = t(1 − t)−1 [tσ Ã0 (t)t−σ + A∞ , A1 (t)] .(2.31)Here we see an operator tadσ , which produces some fractional powers of t. It isconvenient to impose the condition that (σ, σ) 1, or at least that for all roots αone has |(σ, α)| < 12 . This allows to organize the terms of the expansion in powers oft according to their order of magnitude in the asymptotic behavior.

If necessary, onecan perform an analytic continuation of the solution from the region with small σ.We know that in the Lie algebra the operator tadσ acts bytσ Eα t−σ = t(σ,α) Eα ,tσ Hα t−σ = Hα ,(2.32)where α ∈ g∗ is a root and Eα , Hα are the elements of the Cartan-Weyl basis. Let usdefine a grading on the space of monomialsdeg[tk+(σ,w) ] = (k, w) ,where w ∈ Qg is an element of the root lattice Qg =rankgLZαi of g.

It is useful toi=1define a filtrationQ0g ⊂ Q1g ⊂ Q2g ⊂ . . . ⊂ Qg(2.33)on this root lattice, which is recursively constructed as follows: Q0g = {0}, Q1g is theset of all roots of g and 0, andQi+1= {x + y|x ∈ Qig , y ∈ Q1g } = Q1g + . . . + Q1g .gAlso define the double filtration Vn,m on the space of all fractional-power series:tk+(σ,w) ∈ Vn,m ⇔ (k ≥ n) ∧ (w ∈ Qmg ),Vn+1,m ⊂ Vn,m ,Vn,m ⊂ Vn,m+1 .(2.34)Each term of the filtration is generated by these monomials.

This definition turns outto be useful because of the propertiest· : Vn,m → Vn+1,m ,tadσ : Vn,m → Vn,m+1 ,Vn1 ,m1 · Vn2 ,m2 → Vn1 +n2 ,m1 +m2 .23(2.35)2. Isomonodromic τ -functions and WN conformal blocksOne can also see that the degrees present in Vn+1,m+k are larger then in Vn,m if σis sufficiently small (∀α ∈ Q1g : |(σ, α)| < k1 ). We also define a slightly ambiguousnotation Vn,w by(2.36)tk+(σ,w) ∈ Vn,w ⇔ (k ≥ n) .Now we have all the ingredients that are necessary for the construction of aniterative solution of the system (2.31). Our initial data will be given by the triple ofmatrices σ, Ã0 (0) and A1 (0). Symbolically, the system (2.31) can be written asÃ0 (t) = F0 (Ã0 (t), A1 (t)) ,A1 (t) = F1 (Ã0 (t), A1 (t)) ,(2.37)where “affine” bilinear (in the sense f (x, y) = axy + bx + cy + d) functions F0 , F1have the following properties:F0 : Vn0 ,m0 × V0,0 → 0 ,F0 : Vn0 ,m0 × Vn1 ,m1 → Vn0 +n1 ,m0 +m1 +1 ⊂ Vn0 +n1 ,∞ ,F1 : Vn0 ,m0 × Vn1 ,m1 → Vn0 +n1 +1,m0 +m1 +1 + Vn1 +1,m1 ⊂ Vn1 +1,∞ .(2.38)Let us substitute into (2.37) the expressionsÃ0 (t) = Ã0 (0) +A1 (t) = A1 (0) +kt∞Xk=1∞Xk=1kk kÃ0 (t), t A1 (t) ∈tk Ãk0 (t) ,tk Ak1 (t) ,(2.39)Vk,∞ .From (2.38) we immediately see that (2.31) takes the form≤kÃk0 (t) = f0k (Ã<k0 (t), A1 (t)) ,<kAk1 (t) = f1k (Ã<k0 (t), A1 (t)) .(2.40)Because of the ≤ sign our strategy of solving will be to compute first Ak1 (t), and thensubsequently determine Ãk0 (t).

One can also write down explicit formulas for bilinearsf1k and f0k , which are immediate (though cumbersome) consequences of the system(2.31).Now let us determine which powers (k, w) will be actually present in the solution.This will be done again iteratively, using only the properties (2.38):• Taking Ã0 (0) ∈ V0,0 and A1 (0) ∈ V0,0 , and computing F1 , we get an element ofV1,1 , thereforeA1 ∈ V0,0 + V1,1 + . . .• Take Ã0 (0) ∈ V0,0 and A1 ∈ V0,0 + V1,1 + . .

., then Ã0 ∈ V0,0 + V1,2 + . . .• For Ã0 ∈ V0,0 + V1,2 + . . . and A1 ∈ V0,0 + V1,1 + . . . one finds A1 ∈ V0,0 + V1,1 +V2,3 + . . .242.3. Iterative solution of the Schlesinger system• Setting Ã0 ∈ V0,0 + V1,2 + . . . and A1 ∈ V0,0 + V1,1 + V2,3 + . . . yields Ã0 ∈V0,0 + V1,2 + V2,4 . . .• ...Continuing this procedure one finds the following structureÃ0 (t) ∈∞XVk,2k ,k=0A1 (t) ∈ V0,0 +∞X(2.41)Vk,2k−1 .k=1It is easy to check that these spaces are stable under the action of (F0 , F1 ) describedby the rules (2.38). This is somewhat similar to the statement that the cone is stableunder the addition operation.Indeed, let us try to find an element of Ã0 (t) lying in Vk,2k+1 .

For this one wouldneed n0 + n1 ≤ k, m0 + m1 ≥ 2k, so m0 + m1 ≥ 2(n0 + n1 ). Since m1 ≤ 2n1 − 1 forn1 6= 0 (when F0 vanishes) and m0 ≤ 2n0 , such an element cannot exist. Similarly,for A1 , let us take an element lying in Vk,2k . One then needs to satisfy the constraintsn1 ≤ k − 1, m1 ≥ 2k (impossible) or n0 + n1 + 1 ≤ k and m0 + m1 + 1 ≥ 2k, whichimplies m0 + m1 ≥ 2n0 + 2n1 + 1. But m1 ≤ 2n1 and m0 ≤ 2n0 , therefore one cannotget such an element neither.Now let us compute the τ -function and try to understand in which elements ofthe filtration does it lie.

Since we havet∂t log τ (t) = − tr [t−σ (A1 + A∞ )tσ Ã0 + Ã20 ] + t(1 − t)−1 tr [(A1 + A∞ + tσ Ã0 t−σ )A1 ] ,(2.42)naively it could be a term in V0,1 . However, computing the constant part one findst∂t log τ (t) = tr (B Ã0 − Ã20 ) + . . . = tr (At A0 ) + . . . =111= tr (At + A0 )2 − tr A20 − tr A2t + .

. . =222111= (σ, σ) − (θ 0 , θ 0 ) − (θ t , θ t ) + . . . ,222(2.43)where Aν ∼ θ ν . For convenience, let us introduce the notation111χ = (σ, σ) − (θ 0 , θ 0 ) − (θ t , θ t )222(2.44)The terms present in tr (t−σ A1 (t)tσ Ã0 (t)) that are closest to the boundary originate∞Pfrom the constant part of A1 (t).

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
427
Средний доход
с одного платного файла
Обучение Подробнее