Диссертация (Isomonodromic deformations and quantum field theory), страница 10

PDF-файл Диссертация (Isomonodromic deformations and quantum field theory), страница 10 Физико-математические науки (41863): Диссертация - Аспирантура и докторантураДиссертация (Isomonodromic deformations and quantum field theory) - PDF, страница 10 (41863) - СтудИзба2019-05-20СтудИзба

Описание файла

Файл "Диссертация" внутри архива находится в папке "Isomonodromic deformations and quantum field theory". PDF-файл из архива "Isomonodromic deformations and quantum field theory", который расположен в категории "". Всё это находится в предмете "физико-математические науки" из Аспирантура и докторантура, которые можно найти в файловом архиве НИУ ВШЭ. Не смотря на прямую связь этого архива с НИУ ВШЭ, его также можно найти и в других разделах. , а ещё этот архив представляет собой кандидатскую диссертацию, поэтому ещё представлен в разделе всех диссертаций на соискание учёной степени кандидата физико-математических наук.

Просмотр PDF-файла онлайн

Текст 10 страницы из PDF

We define the vertex operators in this theory in terms of solutions of thecorresponding isomonodromy problem. We use this construction to get some newinsights on tau-functions of the multicomponent Toda type hierarchies for the class ofsolutions, given by the isomonodromy vertex operators and get useful representationfor the tau-function of isomonodromic deformations.IntroductionThe aim of the chapter is to present briefly the main free-fermionic constructions thatappear in the study of correspondence between the problem of isomonodromic deformations and two-dimensional conformal field theories – for some class of the theorieswith extended conformal symmetry.

An interest to the two-dimensional conformalfield theories (CFT) with extended nonlinear symmetries, generated by the higherspin holomorphic currents, has been initiated by pioneering work [ZamW]. Thesetheories with so called W-symmetry possess many features of ordinary CFT, including the free field representation [FZ, FL], which becomes especially simple for thecase of integer Virasoro central charges. However, even in this relatively simple caseit turns already to be impossible to construct in generic situation the W-conformalblocks [BW], which are the main ingredients of the conformal bootstrap definition ofthe physical correlation functions [BPZ].This interest has been seriously supported already in our century by rather nontrivial correspondence between two-dimensional CFT and four-dimensional supersymmetric gauge theory [LMN, NO, AGT], where the conformal blocks have to becompared with the Nekrasov instanton partition functions [Nek, NP] producing inthe quasiclassical limit the Seiberg-Witten prepotentials [SW].

This correspondencealso meets serious problems beyond SU (2)/Virasoro level: both on four-dimensionalgauge theory and two-dimensional CFT sides. These difficulties can be attackedusing different approaches, for example in [GMtw] we have demonstrated how the373. Free fermions, W-algebras and isomonodromic deformationsexact conformal blocks for the twist fields [ZamAT87, ZamAT86, ApiZam] in theories with W-symmetry can be computed, using the technique developed previously in[KriW, Mtau, GMqui].Here we present another approach to the study of the CFT vertex operators in thetheories with extended conformal symmetry, based on their free-fermionic construction.

It is clear, that it should work (at least) in the cases of integral central charges,where it is intimately related with the recently discovered there CFT/isomonodromycorrespondence [GIL12, Gav]. We are going to discuss the operator content of thesetheories with nontrivial monodromy properties, and then turn to the problem of computation of the matrix elements of generic monodromy operators. Finally, we aregoing to relate these matrix elements with the tau-functions of two different classesof problems – the tau-functions of the multicomponent classical integrable hierarchiesof Toda type, and the tau-functions of the isomonodromic deformations.Abelian U (1) theoryFermions and vertex operatorsIntroducestandard two-dimensional holomorphic fermionic fields with the action´ the12S = π Σ d z ψ̃∂ψ, so thatψ̃(z)ψ(z 0 ) =1+ ...z − z0(3.1)or{ψr , ψ̃s } = δr+s,0 ,X ψr,ψ(z) =z r+1/21r, s ∈ Z + 21 ,Xψ̃(z) =s∈Z+ 12r∈Z+ 2ψ̃s(3.2)z s+1/2with the half-integer mode expansion.

The bosonization formulas readψ̃(z) =: eiφ(z)−:= ePn<0Pψ(z) =: e−iφ(z):= en<0Jn −nznJn −nznP−en>0Pen>0Jn −nznJn −nznee Q z J0 ,−Q −J0z(3.3),whereJ(z) =: ψ̃(z)ψ(z) := i∂φ(z) =[Jn , Jm ] = nδn+m,0 ,n, m ∈ Z,X Jn,z n+1n∈Z(3.4)[Jn , Q] = δn0 ,where normal ordering means, that all negative modes stand to the left of all positive,and all Q to the left of J0 .Consider now generic vertex operators for the bosonic fieldsiνφ(z)Vν (z) =: e−ν:= ePn<0Jn −nzn−νePn>0Jn −nzn38eνQ z νJ0 ≡ Vν− (z)Vν+ (z)eνQ z νJ0(3.5)3.2.

Abelian U (1) theorywhich satisfy the obvious exchange relations, following from the Campbell-Hausdorffformulaw αβ −Vβ (w)Vα+ (z) ,Vα+ (z)Vβ− (w) = 1 −z(3.6) z αβ w αβ z −αβVα (z)Vβ (w) =1−1−Vβ (w)Vα (z) .wzwOne can also writeVα (z)Vβ (w) = (z − w)αβ : Vα (z)Vβ (w) : .(3.7)Since vertex operators contain the factor eνQ , they shift the vacuum chargeVν (z) : Hσ → Hσ+νwhen acting onto a sector in full Hilbert spaceMH=Hσ(3.8)(3.9)σcorresponding to the definite value of this charge. Notice that we do not impose anyspecial constraints to the (real) values of the vacuum charges σ ∈ R.The Hilbert space Hσ is constructed by the action of the negative bosonic generatorsJ−n1 .

. . J−nk |σi(3.10)on the vacuum vector J0 |σi = σ|σi, and these states can be labeled by the Youngdiagrams with the row lengths n1 , . . . , nk .One can also construct the action of the fermionic operators on this vector space.Then the bosonization formulas (3.3) will generally produce the fractional powers inholomorphic coordinate z due to the factors z J0 , while e±Q just shift the vacuumcharge by ±1.

It means that one can define the (multiple) action of the modes of theoperatorsX ψ̃ σX ψσrrσ,ψ̃(z)=ψ σ (z) =(3.11)r+1/2+σr+1/2−σzzrrin the direct sum of the Hilbert spacesHσ =MHnσ(3.12)n∈Znaturally labeled by some fractional σ ∈ R/Z.Basis in the each space Hnσ can be given by the vectors generated by the zero-chargeexpressions of the fermionic modes. As in bosonic representation, these vectors canbe labeled by the Young diagramsYσ|Y, σi =ψ̃−pψ σ |σii −qi(3.13)iwhere now pi and qi are the Frobenius coordinates of the Young diagram. In ourconvention they are half-integer, and can be easily read of the following picture:393.

Free fermions, W-algebras and isomonodromic deformations@@@i.e. one has to cut the diagram by the main diagonal and just take the areas of therows and columns starting from the diagonal cells. For example, the Young diagramfrom the picture has {pi } = { 29 , 52 , 23 } and {qi } = { 92 , 52 , 21 }.The states in the dual to Hσ module can be obtained by the Hermitian conjugationYhσ, Y | = hσ|ψ̃qσi ψpσi .(3.14)iOur main aim in what follows is to compute the matrix elements of the operatorVν (1) = Vν between the arbitrary fermionic statesZ(ν|Y 0 , Y ) = hθ + ν, Y 0 |Vν (1)|Y, θi .(3.15)The most straightforward way is to use explicit bosonic representation (3.5) of thevertex operatorYYψ̃−pi ψ−qi |σi =ψ̃qj0 ψp0j Vν− Vν+ eνQZ(ν|Y 0 , Y ) = hσ + ν|ij= h0|Y−V−νψ̃qj0 Vν−·−V−νψp0j Vν−+Vν+ ψ̃−pi V−ν+· Vν+ ψ−qi V−ν|0i =(3.16)ij= h0|YYY(Vν− )−1 ψ̃qj0 Vν− · (Vν− )−1 ψp0j Vν−Vν+ ψ̃−pi (Vν+ )−1 · Vν+ ψ−qi (Vν+ )−1 |0i .jiIt is easy to understand from (3.3) and (3.5) that the consequent triple products ofoperators in this formula can be considered as certain adjoint action, or just conjugations of the fermions, which turn under such action just into the linear combinationsof themselves.

At the level of generating functions it looks likeVν+ ψ̃(z)(Vν+ )−1 = (1 − z)ν ψ̃(z) ,ν1− −1−ψ̃(z) ,(Vν ) ψ̃(z)Vν = 1 −zVν+ ψ(z)(Vν+ )−1 = (1 − z)−ν ψ(z) ,−ν(3.17)1− −1−(Vν ) ψ(z)Vν = 1 −ψ(z) ,zor, more generallyVν (w)−1 ψ̃ σ+ν (z)Vν (w) =−1Vν (w) ψσ+ν(z)Vν (w) = z νw z −νwX0 1 z nexp νn wnn∈Z!X0 1 z nexp −νn wnn∈Zψ̃ σ (z) ,(3.18)!σψ (z) ,where the formal series in the r.h.s.

can be rewritten with the help of the Fouriertransformation as!X0 z nsin πν X z kexp ν=.(3.19)nπk+νn∈Zk∈Z403.2. Abelian U (1) theoryThis is a particular case of transformations from GL(∞), realized byXars : ψ̃−r ψs :∈ gl(∞),ars → ∞, |r − s| → ∞ ,(3.20)moreover, corresponding to the situation, when ars = Par−s (a well known example ofsuch transformation is generated by the currents Jn = r : ψ̃r ψn−r : from (3.4)). It istrue in the most general case: if one computes any matrix elements of such operator,they always can be expressed in terms of those with only two extra fermion insertions,i.e. we do not need an explicit form of the operator Vν = Vν− Vν+ – just the only factof the adjoint action, and we are going to use this property in more complicated nonAbelian situation below.In particular, one can compute (3.16) first using the Wick theorem!0 ψp0 Vν |σi0 Vν ψ−q |σihσ+ν|ψ̃hσ+ν|ψ̃qqijjjZ(ν|Y 0 , Y ) = det= det Gν (3.21)−hσ + ν|ψp0j Vν ψ̃−pi |σi hσ + ν|Vν ψ̃−pi ψ−qi |σiand then to apply (3.17) to the matrix elements in (3.21).Matrix elements and Nekrasov functionsThe two-fermion matrix elements of the matrix G = Gν (its rows are labeled by{xa } = {qj0 } ∪ {−pi }, whereas columns are labeled by {yb } = {p0j } ∪ {−qi }, here wedenote by p and q some positive half-integer numbers) are expressed asq 0 − 21G(q 0 , p0 ) = h0|ψq0 ψ̃p0 Vν− |0i =X (ν)m (−ν)p0 +q0 −m,0 + q 0 − m)!m!(pm=01q− 2X(−ν)n (ν)p+q−n+G(−p, −q) = h0|Vν ψ−p ψ̃−q |0i =,n!(p+q−n)!n=0p0 − 21G(−p, p0 ) = −h0|ψ̃p0 Vν− Vν+ ψ−p |0i = −(3.22)X (−ν)m (ν)m+p−p0,0 )!m!(m+p−pm=01q− 2X(−ν)n (ν)n+q0 −q0− +G(q , −q) = h0|ψq0 Vν Vν ψ̃−q |0i =.0 − q)!n!(n+qn=0These expressions are easily computed, using adjoint action (3.17) for the componentsVν+ ψ−p (Vν+ )−1∞X(ν)m=ψ−p+m ,m!m=0(Vν− )−1 ψq Vν−∞X(ν)m=ψq−m ,m!m=0Vν+ ψ̃−q (Vν+ )−1(Vν− )−1 ψ̃p Vν−41∞X(−ν)m=ψ̃−q+mm!m=0∞X(−ν)m=ψ̃p−mm!m=0(3.23)3.

Free fermions, W-algebras and isomonodromic deformationswith (ν)m = ν(ν + 1) . . . (ν + m − 1), (ν)0 = 1, and there are explicit formulas for thesums in the r.h.s. of (3.22)bX(ν)b+1 (−ν)a−b(ν)m (−ν)a−m=m! (a − m)!νab!(a − b − 1)!m=0(3.24)bX(−ν)m (ν)a+m(−ν)b+1 (ν)a+b+1=−m! (a + m)!ν(a + ν)b!(a + b)!m=0which can be easily proven by induction. It allows to rewrite matrix elements (3.22)in the factorized form(ν)q0 + 1 (−ν)p0 + 1122,ν(p0 + q 0 ) (q 0 − 21 )!(p0 − 12 )!(ν)p+ 1 (−ν)q+ 1122G(−p, −q) = −,ν(p + q) (p − 21 )!(q − 12 )!(ν)p+ 1 (−ν)p0 + 1122G(−p, p0 ) =,ν(p − p0 + ν) (p − 12 )!(q 0 − 21 )!(ν)q0 + 1 (−ν)q+ 1122.G(q 0 , −q) = − 0110ν(q − q + ν) (q − 2 )!(q − 2 )!G(q 0 , p0 ) =(3.25)The determinant from (3.21) can be therefore written asdet G(xa , yb ) =a,bY (−ν)p0j + 1 (ν)qj0 + 1 Y (ν)pi + 1 (−ν)qi + 1222jν(p0j − 21 )!(qj0 − 12 )!i2ν(pi − 21 )!(qi − 12 )!· det G̃(x̃a , ỹb )a,b(3.26)where now for two new sets {x̃a } = {qj0 } ∪ {−pi − ν}, {ỹb } = {−p0j } ∪ {qi − ν}G̃(x̃a , ỹb ) =sgn(x̃a ỹb ),x̃a − ỹb(3.27)and the corresponding determinant can be computed using the Cauchy determinantformulaQQ1a<b (x̃a − x̃b )a>b (ỹa − ỹb )Qdet=,a,b x̃a − ỹbab (x̃a − ỹb )so one gets finallyZ(ν|Y 0 , Y ) = ±Y (−ν)p0j + 1 (ν)qj0 + 1 Y (ν)pi + 1 (−ν)qi + 122221111 ×00ν(p−)!(q−)!ν(p−)!(q−)!iijj2222jiQQQQQ 0Q 00000i>j (pi − pj )i<j (pi − pj )i>j (qi − qj )i<j (qi − qj )ij (qi + pj + ν)ij (pi + qj − ν)Q 0QQ 0Q×00ij (pi + qj )ij (pi + qj )ij (qi − qj + ν)ij (pi − pj + ν)(3.28)It is easy to see that this expression has the structureZ(ν|Y 0 , Y ) = ±Zb (ν|Y 0 , Y )11Z02 (Y 0 )Z02 (Y )42(3.29)3.2.

Abelian U (1) theorywhere12Z0 (Y ) =YQpi − ! qi − 12 ! Q12iij (pi+ qj )Q,i<j (qi − qj )i<j (pi − pj )(3.30)whileZb (ν|Y 0 , Y ) =Yν −1 (−ν)p0i + 1 (ν)qi0 + 12Y2iν −1 (−ν)qj + 1 (ν)pj + 1 ×22jQ 0Q 0(pi + qj − ν)ij (qi + pj + ν)Q ij 0×Q 0.ij (qi − qj + ν)ij (pi − pj − ν)In this normalization one can check thatYYZb (ν|Y 0 , Y ) = ± (1 + aY (t) + lY 0 (t) + ν)(1 + aY 0 (s) + lY (s) − ν)(3.31)(3.32)s∈Y 0t∈Yis exactly the Nekrasov bi-fundamental function of the U (1) gauge theory at c = 1 or1 + 2 = 0. Notice also thatY11(1 + aY (s) + lY (s))2 = ZV (Y )−1Zb (0|Y, Y ) = Z02 (Y )Z02 (Y ) =(3.33)s∈Yis Nekrasov function for the pure U (1) gauge theory, which corresponds to the Plancherelmeasure on partitions [LMN].Riemann-Hilbert problemThe following simple observation is extremely important for our generalizations below.Consider the correlatorhθ|Vν (1)ψ̃ σ (z)ψ σ (w)|σi = δθ,σ+νz σ w−σ (1 − z)ν (1 − w)−νz−w(3.34)which is easily computed using bosonization rules (3.3).

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
427
Средний доход
с одного платного файла
Обучение Подробнее