Автореферат (Маршрут автоматизации системного проектирования микрооптоэлектромеханических систем), страница 2

PDF-файл Автореферат (Маршрут автоматизации системного проектирования микрооптоэлектромеханических систем), страница 2 Технические науки (24720): Диссертация - Аспирантура и докторантураАвтореферат (Маршрут автоматизации системного проектирования микрооптоэлектромеханических систем) - PDF, страница 2 (24720) - СтудИзба2019-03-12СтудИзба

Описание файла

Файл "Автореферат" внутри архива находится в папке "Маршрут автоматизации системного проектирования микрооптоэлектромеханических систем". PDF-файл из архива "Маршрут автоматизации системного проектирования микрооптоэлектромеханических систем", который расположен в категории "". Всё это находится в предмете "технические науки" из Аспирантура и докторантура, которые можно найти в файловом архиве МАИ. Не смотря на прямую связь этого архива с МАИ, его также можно найти и в других разделах. , а ещё этот архив представляет собой кандидатскую диссертацию, поэтому ещё представлен в разделе всех диссертаций на соискание учёной степени кандидата технических наук.

Просмотр PDF-файла онлайн

Текст 2 страницы из PDF

Полученный в ходе работы маршрутавтоматизации системного проектирования МОЭМСдостовернодемонстрирует, что возможно проектирование в едином маршруте МОЭМсистем с механическими подсистемами с размерами менее 500 мкм, а так жедемонстрируют эффективность предложенных алгоритмов. Предложенныйалгоритм адаптации позволяет проводить моделирование механическойподсистемы МОЭМ систем на основе метода Ланцоша вне зависимости отпараметров механической подсистемы и получать математическую модельмеханической подсистемы, описанную на языке формального описанияVHDL-AMS. Разработан программный модуль, позволивший по результатамматематическогомоделированияустановитьзависимостьмеждутехнологическими дефектами механической подсистемы и выходнымипараметрами МОЭМС.

Это позволило повысить количество выхода годных,привести выходные характеристики устройства к заявленным.Полученные результаты исследований использованы при выполненииисследований по грантам Российского Фонда ФундаментальныхИсследований (гранты 10-07-0171а и 13-07-00073а). Полученные результатывнедрены в учебный процесс в МГТУ им. Баумана.Реализация результатов.Полученные результаты исследований использованы при выполнениигранта Российского Фонда Фундаментальных Исследований (грант 10-070171а и 13-07-00073а).

Так же полученные результаты внедрены в учебныйпроцесс в качестве заданий курсовой работы для студентов старших курсов вМГТУ им. Баумана.Апробация работы. Работа апробирована на следующих6конференциях:международныхмолодежныхнаучно-техническихконференциях «Наукоемкие технологии и интеллектуальные системы», г.Москва, 2011-2013 г.

г., Всероссийских школах-семинарах студентов,аспирантов и молодых ученых по направлению "Наноинженерия", г. Калуга,2009-2011 гг. В 2012 году присуждена стипендия Президента РФ. Такжеработа удостоена различных медалей и дипломов, в том числе медалью залучшую научную работу XII конференции «Будущее машиностроенияРоссии» 2010 г. и дипломом первой степени III всероссийской школысеминара студентов, аспирантов и молодых ученых по направлению"Наноинженерия" (2010 г.), 10-я международная конференция «Аналоговыеполупроводниковые устройства и микросистемы 2014», Словакия,г.Смоленице.Публикации.

По материалам и основному содержанию диссертацииопубликовано 7 печатных работ в трудах конференций и 3 статьи в журналахиз списка ВАК, а так же публикация в сборнике трудов международнойконференции, входящей в библиографическую базу данных SCOPUS.Структура и объем диссертации. Диссертационная работа состоит извведения, четырех глав, заключения. Общий объем работы 105 страниц,содержит 57 рисунков, список использованных источников из 51наименования.СОДЕРЖАНИЕ ДИССЕРТАЦИИВо введении обоснована актуальность системного подхода кмногомасштабному моделированию микрооптоэлектромеханических систем,сформулирована цель и задачи исследования и изложена структурадиссертационной работы.Первая глава диссертации посвящена обзору проблем и постановкепроблемы моделирования и автоматизации системного проектированияМОЭМсистем,проблемаммеждисциплинарногомоделированиямикрооптоэлектромеханических систем, а также проблеме построенияконечно-элементныхмоделейдлямеханическихподсистемсгеометрическими размерами менее 500 мкм с учетом технологическихпогрешностей изготовления.Проведен анализ проблем моделирования МОЭМ систем на примеремикрооптоэлектромеханического акселерометра на основе интерферометраФабри-Перо.

Схематичное изображение рассматриваемого акселерометрапредставлено на рисунке 1. Интерферометр Фабри-Перо, закрепленный наподвижной массе (рис.1), представляет из себя две плоскопараллельныепластины (толщиной h1 и h2) с воздушным зазором, роль которого играеткварцевое стекло толщиной d, покрытые алюминием. Одна из пластин имееттолщину покрытия h1 порядка десятка нм. Для обеспечения прохождения неменее 75% падающего луча, другая пластина является зеркальной столщиной покрытия h2 порядка сотен нм.Показана необходимость разработки маршрута автоматизациисистемного проектирования МОЭМ систем.

Проведен сравнительный анализ7достоинств и недостатков существующих подходов.Рисунок 1 – Микрооптоэлектромеханический акселерометр на основеинтерферометра Фабри-Перо и его конструкцияТак же в первой главе рассматривается проектирование механическихподсистемдлямикрооптоэлектромеханическихсистемидлямикрооптоэлектромеханических систем с распределенными параметрами.При проектировании МОЭМ систем, в частности при разработкематематической модели механической подсистемы, возникает проблеманевозможности получения в общем случае описания поведения на языкеVHDL-AMS. Показано, что необходима разработка алгоритма адаптацииконечно-элементной модели механической подсистемы с размерами менее500 мкм.

Проведен анализ динамических сетей Петри, приведеныдостоинства и недостатки.Основной задачей является разработка маршрута автоматизациисистемного проектирования МОЭМС для получения его структуры.Поскольку в существующих средствах САПР невозможно провестисовместное математическое моделирование механической, оптической иэлектронной подсистем МОЭМС.Во второй главе предложены алгоритм многомасштабногомоделирования МОЭМ систем и алгоритм адаптации конечно-элементноймодели механической подсистемы, которые являются частью маршрутаавтоматизации системного проектирования микрооптоэлектромеханическихсистем.На основе предложенного подхода исходная микрооптоэлектромеханическая система разделяется на оптическую, механическую иэлектронную подсистемы.

На следующем этапе проводится раздельноемоделирование данных подсистем и их конвертация всех моделей на языкформального описания VHDL-AMS. Далее проводится совместноемоделирование оптической, механической и электронной подсистем. Дляперехода между подсистемами различной физической природы используетсяописание подсистем на языке VHDL-AMS. Рассмотрено построение моделейоптических подсистем с использованием геометрических матриц,базирующееся на предположении, что угол между соседними лучами должен8стремиться к нулю. Предложенный подход проиллюстрирован на примереинтерферометра Фабри-Перо. Показано, что необходимо рассмотретьследующие случаи прохождения светового пучка: фазовый переходвоздушная среда/слой оксида алюминия толщиной h1; фазовый переход слойоксида алюминия/кварцевое стекло толщиной d; отражение от второго слояоксида алюминия толщиной h2; фазовый переход кварцевое стекло/слойоксида алюминия толщиной h1; фазовый переход слой оксида алюминиятолщиной h1/воздушная среда.

Далее, формируется матричная модель,которая описывает поведение светового луча при прохождении сквозьинтерферометр Фабри-Перо:гдеni, ti и ri соответственно коэффициент преломления, расстояние и радиускривизны соответствующей поверхности.На основе этой модели был разработан модуль в программном комплексеMATLAB/Simulink, позволяющий получить описание модели на языкеVHDL-AMS для оптической подсистемы.На основе законов Кирхгофа был разработан модуль в программномкомплексе MATLAB/Simulink, позволяющий получить описание модели наязыке VHDL-AMS для электронной подсистемы.Для построения моделей механической подсистемы выбран метод9конечных элементов (КЭ).

На рисунке 3 приведен разработанный алгоритмадаптации конечно-элементной модели механической подсистемы сразмерами менее 500 мкм.В основе данного алгоритма лежит возможность изменять размеры конечныхэлементов и плотность их расположения в зависимости от областеймаксимальной и минимальной деформации.После построения конечно-элементной модели механическойподсистемы МОЭМС следующим этапом является нахождение собственныхчастот механической подсистемы и построение макромодели наязыкеVHDL-AMS.Предложенный подход былреализован с использованиеммодуля ROMTool программногокомплекса ANSYS. Данныйпакет использует результатымоделированиямеханическойподсистемы для построениямакромоделимеханическойподсистемы как взвешеннойсуммы собственных векторов.Программныймодульдляадаптации конечно-элементноймодели был реализован на языкеAPDL.Применениеразработанногомодуляпостроенияадаптивнойконечно-элементной модели ипоследующегополучениямодели на языке VHDL-AMSпозволяет сократить время,требуемоенапостроениеконечно-элементноймодели,проведениематематическогомоделирования с приложенныминагрузками, получение описанияРисунок 3 – Алгоритм адаптации конечно- поведенияматематическойэлементной модели механическоймодели на языке VHDL-AMS.подсистемы МОЭМ системыОсновной особенностью разработанного модуля, является то, что дляполучения математической модели на языке VHDL-AMS пользователюдостаточно ввести параметры создаваемой модели.

В основе данного модулялежит алгоритм (рис. 3), основанный на итеративном подборе размераконечного элемента, а также увеличении плотности сетки конечныхэлементов в области максимальной деформации. Основным этапом,10позволяющим добиться адаптации, является этап эскизного моделированиямеханической подсистемы с последующимполучением матрицыдеформаций. Затем производится поиск областей максимальной иминимальной деформации.

После получения списка узлов с наибольшими инаименьшими деформациями производится изменение размера конечногоэлемента в областях наибольшей деформации и последующее увеличениеплотности КЭ. После построения адаптивной сетки КЭ проводятся основныеэтапы математического моделирования механической подсистемы споследующим получением описания поведения механической подсистемы наязыке VHDL-AMS. Разработанный модуль позволяет получать описаниематематической модели на языке VHDL-AMS при нелинейном разбиениигеометрической модели на конечные элементы, что сокращает время,затрачиваемое на проектирование и получение математической модели наязыке VHDL-AMS.На рисунке 4 представлена предложенная архитектура системысопряжения программных комплексов ANSYSи MATLAB с использованиемразработанных модулей.Модуль взаимодействия программных комплексов ANSYS и MATLABбыл реализован на языке C++ в операционной среде Windows.Рисунок 4 – Взаимодействие программных комплексов ANSYSи MATLAB сприменением разработанных программных модулейВ третьей главе разработанные алгоритмы и программные модулиприменены для исследования влияния технологических погрешностей нахарактеристики механической подсистемы МОЭМ акселерометра на основеинтерферометра Фабри-Перо.На рисунке 5а приведена геометрическая модель подвижной массымеханической подсистемы МОЭМ акселерометра с одиночной подвижноймассой.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее