86152 (Основные понятия математического анализа), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Основные понятия математического анализа", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "86152"

Текст 2 страницы из документа "86152"



Линейные дифференциальные уравнения

ЛДУ- уравнения вида y’+P(x)y=Q(x)– первого порядка относительно у и у’.

Для решения ЛДУ применяем замену: y=UV, тогда y’=U’V+UV’

U’V+UV’+P(x)UV=Q(x)

V(U’+P(x)U)+UV’=Q(x)

Далее U’+P(x)U=0, получаем два уровнения с разделяющимися переменными:

1). U’+P(x)U=0 находим U. 2). UV’=Q(x) находим V. . С ставится только при вычислении второго уравнения.

Замечание. Выражение, стоящее в скобках, можно прировнять к нулю, т.к. одну из функций можно взять произвольной, другую – определяем на основании ЛДУ.



Уравнения Бернулли

УБ- дифференциальные уравнения вида y’+P(x)y=Q(x)*yn, где

- т.к. при этих значениях уравнение будет линейным.

УБ решаются так же, как и линейные.

Дифференциальные уравнения второго порядка

Дифференциальные уравнения второго порядка в общем виде записываются: F(x,y,y’,y’’)=0

Как и в случае дифференциальных уравнений первого порядка для решения дифференциальных уравнений второго порядка существуют общее и частное решения. Но, если для дифференциальных уравнений первого порядка решение зависело от одной константы С, то для дифференциальных уравнений второго порядка решение зависит от двух постоянных: - общее решение.

Если заданы начальные условия (у=у0, у=у0 при х=х0), то получаем частное решение, удовлетворяющее этим начальным условиям.

Начальные условия так же могут задаваться в виде:

у=у0 при х=х0; у=у1 при х=х1.



Три случая понижения порядка

1. Случай непосредственного интегрирования

F(x,y”)=0

y’’=f(x)- решение этого уравнения находится путем двукратного интегрирования.

; ; ;

2. Когда дифференциальное уравнение явно не содержит у, т.е. F(x,y’,y”)=0

С помощью замены у’=р; это уравнение приводим к уравнению первого порядка .

3. Когда дифференциальное уравнение явно не содержит х, т.е. F(y,y’,y”)=0.

С помощью замены y’=p, это уравнение приводим к уравнению первого порядка .



Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Линейными однородными дифурами второго порядка с постоянными коэффициентами называются уравнения вида:

y’’+py’+qy=0,

где p и q – некоторые числа.

Составим характеристическое уравнение:

,

которое получается из данного уравнения путем замены в нем производных искомой функции соответствующими степенями “к”. Причем сама функция заменяется единицей.

Если к1 и к2 – корни характериситического уравнения, то общее решение однородного уравнения имеет один из следующих трех видов:

1). , если к1 и к2 – действительные и различные, т.е. D>0.

2). , если к1 и к2 – действительные и равные, т.е. к1=к2, D=0.

3). , если к1 и к2 – комплексные, т.е. ; D<0.



Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Имеют вид:

,

где p и q– некоторые числа.

Общее решение имеет вид: , где

y0 - общее решение соответствующего однородного уравнения; - частное решение соответствующего однородного уравнения.

Т.е. для нахождения общего решения неоднородного уравнения ‘у’, сначала находят общее решение соответствующего однородного уравнения у0, а затем частное решение , и складывают их.

Частное решение неоднородного уравнения находится методом неопределенных коэффициентов.

Для нахождения частных решений рассмотрим несколько случаев.

1. Пусть правая часть f(x) имеет вид:

, где Pn(x) – многочлен n–ой степени.

Тогда возможны следующие 3 случая:

А). Если ‘а’ не является корнем характеристического уравнения k2+pk+q=0, то частное решение имеет вид: , где Qn(x) – многочлен той же степени, что и Pn(x), только с неопределенными коэффициентами.

Например.

Pn(x)=8 - многочлен 0-ой степени (n=0). Qn(x)=A;

Pn(x)=2x-3 - многочлен 1-ой степени (n=1). Qn(x)=Ax+B;

Pn(x)=x2 - многочлен 2-ой степени (n=2). Qn(x)=Ax2+Bx+C;

Pn(x)=3x3-3x - многочлен 3-ей степени (n=3). Qn(x)=Ax3+Bx2+Cx+D.

Замечание. Многочлен Qn(x) всегда должен быть полный, т.е. содержать все степени х. Коэффициенты А,В,С,Д и т.д. находим по методу неопределенных коэффициентов непосредственно при решении каждого конкретного уравнения.

Б). Если а является однократным корнем характеристического уравнения k2+pk+q=0, то есть совпадает с одним из корней характеристического уравнения, то частное решение имеет вид: .

В). Если а является двукратным корнем характеристического уравнения k2+pk+q=0, то есть совпадает с двумя корнями характеристического уравнения, то частное решение имеет вид: .

Итог.

Если , то , где r– кратность корня ‘а’ в характеристическом уравнении, т.е. r=0, если ‘а’ не есть корень; r=1, если ‘а’ совпадает с одним из корней; r=2, если ‘а’ совпадает с двумя корнями.

2. Если правая часть f(x) имеет вид:, где Pn(x)–многочлен n–ой степени; Qm(x)-многочлен m–ой степени.

Тогда возможны следующие два случая:

А). Если не является корнем характеристического уравнения k2+pk+q=0 ( ), то частное решение имеет вид: , где SN(x), TN(x)–многочлены степени N с неопределенными коэффициентами, где N=max из n и m (N=max{n,m}), т.е. степень N многочленов SN(x) и TN(x) равна наибольшей из степеней многочленов Pn(x) и Qm(x).

Б). Если является корнем характеристического уравнения k2+pk+q=0 ( ), то частное решение имеет вид:

Замечание.

- Если в правой части f(x) неоднородного уравнения во 2 случае отсутствует одно из слагаемых, т.е. Pn(x)=0 или Qm(x)=0, то частное решение все равно записывается в полоном виде.

- Если правая часть f(x) неоднородного уравнения в 1 и 2 случаях есть сумма нескольких функций (f(x)= f1(x)+ f2(x)+… fn(x)), то .

- Так же рассматриваем все комбинации при расчете : cosx, sinx, xcosx, xsinx,x2cosx, x2sinx.



КОМПЛЕКСНЫЕ ЧИСЛА

Комплексным числом (z) называется выражение z=x+iy, где х и у- действительные числа, i-мнимая единица.

i определяется: i2=-1 , отсюда .

х- действительная часть (x=Rez);

у- мнимая часть (y=Imz).

Геометрическое изображение комплексных чисел

Существуют следующие формы комплексных чисел: алгебраическая (x+iy), тригонометрическая (r(cos +isin )), показательная (rei ).

Всякое комплексное число z=x+iy можно изобразить на плоскости ХОУ в виде точки А(х,у).

Плоскость, на которой изображаются комплексные числа, называется плоскостью комплексного переменного z (на плоскости ставим символ z).

Ось ОХ – действительная ось, т.е. на ней лежат действительные числа. ОУ – мнимая ось с мнимыми числами.

x+iy - алгебраическая форма записи комплексного числа.

Выведем тригонометрическую форму записи комплексного числа.

;

Подставляем полученные значения в начальную форму:

, т.е.

r(cos +isin ) - тригонометрическая форма записи комплексного числа.

Показательная форма записи комплексного числа следует из формулы Эйлера:

, тогда

z=rei - показательная форма записи комплексного числа.

Действия над комплексными числами

1. сложение. z1+z2=(x1+iy1)+ (x2+iy2)=(x1+x2)+i(y1+y2);

2. вычитание. z1-z2=(x1+iy1)- (x2+iy2)=(x1-x2)+i(y1-y2);

3. умножение. z1z2=(x1+iy1)*(x2+iy2)=x1x2+i(x1y2+x2y1+iy1y2)=(x1x2-y1y2 )+i(x1y2+x2y1);

4. деление. z1/z2=(x1+iy1)/(x2+iy2)=[(x1+iy1)*(x2-iy2)]/[ (x2+iy2)*(x2-iy2)]=

Два комплексных числа, которые отличаются только знаком мнимой единицы, т.е. z=x+iy (z=x-iy), называются сопряженными.

Произведение

- Если комплексные числа заданы в тригонометрической форме.

z1=r(cos +isin ); z2=r(cos +isin ).

То произведение z1*z2 комплексных чисел находится: , т.е. модуль произведения равен произведению модулей, а аргумент произведения равен сумме аргументов сомножителей.

- Если комплексные числа заданы в показательной форме.

; ;

Частное

- Если комплексные числа заданы в тригонометрической форме.

- Если комплексные числа заданы в показательной форме.

Возведение в степень

1. Комплексное число задано в алгебраической форме.

z=x+iy, то zn находим по формуле бинома Ньютона:

zn=(x+iy)n.

- число сочетаний из n элементов по m (число способов, сколькими можно взять n элементов из m).

; n!=1*2*…*n; 0!=1; .

Применяем для комплексного числа.

В полученном выражении нужно заменить степени i их значениями:

i0=1 Отсюда, в общем случае получаем: i4k=1

i1=i i4k+1=i

i2=-1 i4k+2=-1

i3=-i i4k+3=-i

i4=1

i5=i

i6=-1

Пример.

i31= i28 i3=-i

i1063= i1062 i=i

2. Если комплексное число задано в тригонометрической форме.

z=r(cos +isin ), то

- формула Муавра.

Здесь n может быть как “+” так и “-” (целым).

3. Если комплексное число задано в показательной форме:

Извлечение корня

Рассмотрим уравнение: .

Его решением будет корень n–ой степени из комплексного числа z: .

Корень n–ой степени из комплексного числа z имеет ровно n решений (значений). Корень из действующего числа n-ой степени имеет только одно решение. В комплексных – n решений.

Если комплексное число задано в тригонометрической форме:



z=r(cos +isin ), то корень n-ой степени от z находится по формуле:

, где к=0,1…n-1.



РЯДЫ

Числовые ряды

Пусть переменная а принимает последовательно значения а123,…,аn. Такое перенумерованное множество чисел называется последовательностью. Она бесконечна.

Числовым рядом называется выражение а123+…+аn+…= . Числа а123,…,аn – члены ряда.

Например.

а1 – первый член ряда.

аn – n-ый или общий член ряда.

Ряд считается заданным, если известен n-ый (общий член ряда).

Числовой ряд имеет бесконечное число членов.

Числители – арифметическая прогрессия (1,3,5,7…).

n-ый член находится по формуле

аn1+d(n-1); d=аnn-1.

Знаменатель – геометрическая прогрессия.

bn=b1qn-1; .

Рассмотрим сумму первых n членов ряда и обозначим ее Sn.

Sn=а1+а2+…+аn.

Sn – n-ая частичная сумма ряда.

Рассмотрим предел:

S - сумма ряда.

Ряда сходящийся, если этот предел конечен (конечный предел S существует).

Ряд расходящийся, если этот предел бесконечен.

В дальнейшем наша задача заключается в следующем: установить какой ряд.

Одним из простейших, но часто встречающихся рядов является геометрическая прогрессия.

, C=const.

Геометрическая прогрессия является сходящимся рядом, если , и расходящимся, если .

Также встречается гармонический ряд (ряд ). Этот ряд расходящийся.

Свойства числовых рядов

1. Если сходится а123+…+аn+…= , то сходится и ряд аm+1m+2m+3+…, полученный из данного ряда отбрасыванием первых m членов. Этот полученный ряд называется m-ым остатком ряда. И, наоборот: из сходимости m-го остатка ряда вытекает сходимость данного ряда. Т.е. сходимость и расходимость ряда не нарушается, если прибавить или отбросить конечное число его членов.

2. Если ряд а123+… сходится и его сумма равна S, то ряд Са1+Са2+…, где С= так же сходится и его сумма равна СS.

3. Если ряды а12+… и b1+b2+… сходятся и их суммы равны соответственно S1 и S2, то ряды (а1+b1)+(а2+b2)+(а3+b3)+… и (а1-b1)+(а2-b2)+(а3-b3)+… также сходятся. Их суммы соответственно равны S1+S2 и S1-S2.

4. а). Если ряд сходится, то его n-ый член стремится к 0 при неограниченном возрастании n (обратное утверждение неверно).

- необходимый признак (условие) сходимости ряда.

б). Если то ряд расходящийся – достаточное условие расходимости ряда.

-ряды такого вида исследуются только по 4 свойству. Это расходящиеся ряды.

Знакоположительные ряды

Признаки сходимости и расходимости знакоположительных рядов.

Знакоположительные ряды это ряды, все члены которых положительные. Эти признаки сходимости и расходимости мы будем рассматривать для знакоположительных рядов.

1. Первый признак сравнения.

Пусть даны два знакоположительных ряда а123+…+аn+…= (1) и b1+b2+b3+…+bn+…= (2).

Если члены ряда (1) не больше соответствующих членов ряда (2), т.е. аn bn и ряд (2) сходится, то и ряд (1) также сходится.

Если члены ряда (1) не меньше соответствующих членов ряда (2), т.е. аn bn и ряд (2) расходится, то и ряд (1) также расходится.

Этот признак сравнения справедлив, если неравенство выполняется не для всех n, а лишь начиная с некоторого.

2. Второй признак сравнения

Если существует конечный и отличный от нуля предел , то оба ряда сходятся или расходятся одновременно.

-ряды такого вида расходятся по второму признаку сравнения. Их надо сравнивать с гармоническим рядом.

3. Признак Даламбера

Если для знакоположительного ряда (а123+…+аn+…= ) существует (1), то ряд сходится, если q<1, расходится, если q>1. Если q=1 то вопрос остается открытым.

4. Признак Коши радикальный

Если для знакоположительного ряда существует предел (2), то ряд сходится, если q<1, расходится, если q>1. Если q=1 то вопрос остается открытым.

5. Признак Коши интегральный

Вспомним несобственные интегралы.

Если существует предел . Это есть несобственный интеграл и обозначается .

Если этот предел конечен, то говорят, что несобственный интеграл сходится. Ряд, соответственно, сходится или расходится.

Пусть ряд а123+…+аn+…= - знакоположительный ряд.

Обозначим an=f(x) и рассмотрим функцию f(x). Если f(x)- функция положительная, монотонно убывающая и непрерывная, то, если несобственный интеграл сходится, то и данный ряд сходится. И наоборот: если несобственный интеграл расходится, то и ряд расходится.

Если ряд конечен, то он сходится.

Очень часто встречаются ряды - ряд Дерихле. Он сходится, если p>1, расходится p<1. Гармонический ряд является рядом Дерихле при р=1. Сходимость и расходимость данного ряда легко доказать с помощью интегрального признака Коши.

Знакопеременные и знакочередующиеся ряды

Знакопеременный ряд – это ряд, среди членов которого имеются как + так и – члены.

Частным случаем знакопеременного ряда является знакочередующийся ряд. Это ряд, у которого за каждым + членом следует -, и наоборот, т.е. знаки чередуются.

Пусть задан знакопеременный ряд а123+…+аn+…= (1) (члены как + так и -).

Возьмем ряд (3), составленный из абсолютных величин членов ряда (1). Ряд (3) является знакоположительным рядом.

Если ряд (3) сходится, то ряд (1) также сходится и называется абсолютно сходящимся (ответ получен сразу).

Если ряд (3) расходится, а:

- ряд (1) сходится, то ряд (1) называется условно сходящимся;

- ряд (1) расходится, то ряд (1) называется расходящимся.

При исследовании знакоположительных рядов можем получить 2 ответа: ряд сходится или ряд расходится.

При исследовании знакопеременных рядов могут получиться 3 ответа: ряд сходится абсолютно, ряд сходится условно, ряд расходится.

Схема

Если (3) – сходится (1) - сходится абсолютно.

Если (3) – расходится

При исследовании на сходимость знакопеременного ряда (1) начинать надо с разбора знакоположительного ряда (3). Т.к. ряд (3)- знакоположительный ряд, то к нему можно применить все признаки сходимости для знакоположительных рядов.

Из расходимости ряда (3) не следует расходимость ряда (1), но если (3) расходится по признакам Даламбера или Коши радикальный, то расходится не только ряд (3), но и ряд (1).

Если ряд – знакочередующийся, то для него дается еще один признак сходимости:

Признак Лейбница

Если для знакочередующегося ряда b1-b2+b3-b4+…(bn 0) выполняются условия:

1. b1 b2 b3 b4…;

2. , - то данный ряд сходится условно.

28




Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее