151564 (Особенности работы счетчиков излучения), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Особенности работы счетчиков излучения", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "физика" в общих файлах.

Онлайн просмотр документа "151564"

Текст 2 страницы из документа "151564"

По своей природе и свойствам гамма-излучение не отличается от рентгеновского. Обычно под термином рентгеновских лучей подразумевают излучения, создаваемые электронной оболочкой атома при его переходе из возбужденного состояния в нормальное или в результате торможения быстрых электронов, попадающих в поле действия электрических сил ядра (тормозное рентгеновское излучение); в отличие от этого гамма-кванты являются излучениями возбужденного ядра.

Энергия гамма-квантов, излучаемых различными радиоактивными изотопами, лежит в пределах от сотых долей до нескольких мегаэлектронвольт.

Гамма-излучение в окружающем пространстве распространяется со скоростью света (3- 10'° см/сек) и обладает высокой проникающей способностью.

Отсутствие массы покоя и электрического заряда у квантов гамма-излучения обуславливает особенности характера взаимодействия их с веществом.

К основным видам взаимодействия гамма-квантов с веществом относятся: фотоэлектрическое поглощение гамма-квантов, комптоновский эффект (или рассеяние гамма-квантов) и образование электронно-позитронных пар. Условное схематическое изображение видов взаимодействия гамма-кванта с атомом и его электронами приведено на рис. 7.

При фотоэлектрическом поглощении гамма-квант полностью поглощается атомом вещества, в результате чего из атома вылетает электрон. Энергия гамма-кванта при этом процессе расходуется: небольшая часть — на отрыв электрона с его оболочки, а остальная часть — на сообщение ему начальной скорости.

Вырванный электрон (фотоэлектрон) движется под некоторым квантов с атомами и электронами углом к первоначальному направлению движения гамма-кванта и, подобно бета-частице, ионизирует атомы и молекулы окружающей среды.

Фотоэффект является преобладающим видом взаимодействия гамма-излучения с веществом при малой энергии квантов— меньше 0,1—0,5 Мэв. Нижняя граница соответствует средам с малым порядковым номером образующих элементов (воздух, ткани живых организмов, пластмассы и т. д.), верхняя — для веществ с большим порядковым номером элементов (железо, свинец и т. д.).

При комптоновском эффекте гамма-квант, взаимодействуя с электроном атома, передает ему только часть энергии; при этом квант с уменьшенной энергией отклоняется от первоначального направления движения (рассеивается). Чем больше энергии передается электрону, тем больше отклоняется от первоначального направления (рассеивается) квант.

Рассеяние гамма-квантов происходит многократно и в конце концов заканчивается фотоэлектрическим поглощением.

Поток рассеянных гамма-квантов образует так называемое рассеянное излучение, которое не имеет резко выраженной направленности распространения, свойственной гамма-излучению. Электрон при комптоновском эффекте, названный комптоновским, вылетает из атома также под некоторым углом к первоначальному движению гамма-кванта и расходует свою энергию на ионизацию и возбуждение молекул окружающей среды. Таким образом, особенностью комптоновского эффекта является наличие двух процессов: поглощение энергии гамма-излучения путем передачи ее электронам и рассеяние гамма-квантов.

Комптоновский эффект является преобладающим видом взаимодействия для широкого диапазона средних энергий гамма-квантов: для воздуха в диапазоне энергий от 0,1 до 20 Мэв; для свинца примерно от 0,5 до 5 Мэв.

Эффект образования электронно-позитронных пар наблюдается при попадании гамма-квантов с энергией больше 1,02 Мэв в сильное электрическое поле ядра атома вещества. В результате такого взаимодействия энергия гамма-кванта расходуется на образование массы электрона и позитрона (по 0,51 Мэв), а также на сообщение им начальной скорости движения.

При движении в среде электрон и позитрон расходуют свою кинетическую энергию на ионизацию и возбуждение атомов и молекул среды; когда позитрон уменьшит скорость своего движения, он взаимодействует с одним из свободных электронов среды, в результате чего образуются два гамма-кванта.

Эффект образования пар играет существенную роль в поглощении энергии гамма-излучения в веществах с большим порядковым номером образующих элементов и при большой энергия гамма-квантов.

Перечисленные виды взаимодействия обуславливают постепенное ослабление интенсивности гамма-излучения по мере увеличения толщины слоя вещества. Интенсивностью гамма-излучения называется энергия, которая переносится в единицу времени (обычно в секунду) потоком гамма-квантов, проходящим через 1 см поверхности, расположенной перпендикулярно к направлению их движения. Если гамма-излучение содержит гамма-кванты с одинаковой энергией, то оно называется монохроматическим. Интенсивность монохроматического гамма-излучения I равна произведению энергии гамма-квантов Е на их число, проходящее через 1 см поверхности в секунду, п:


Ослабление параллельного пучка гамма-излучения происходит по экспоненциальному закону, графически изображенному на рис. 8, и может быть выражено следующими формулами:


где I0 — интенсивность гамма-излучения при входе в поглощающую среду;

I — интенсивность гамма-излучения после прохождения слоя толщиной d см;

d — слой половинного ослабления, т. е. толщина слоя данного материала, обеспечивающая ослабление интенсивности узкого пучка гамма-излучения в два раза;

µ —линейный коэффициент ослабления гамма-излучения, показывающий, какая доля гамма-квантов из общего их числа будет иметь акты взаимодействия на пути в 1 см.

Линейный коэффициент и слой половинного ослабления d связаны между собой соотношением


Ослабление интенсивности гамма-излучения обусловлено всеми тремя видами взаимодействия гамма-квантов со средой. Поэтому величина µ складывается из коэффициента поглощения за счет фотоэффекта (τ ), коэффициента поглощения за счет образования пар (χ) и коэффициента комптоновского ослабления (σ), который в свою очередь целесообразно разбить на коэффициент поглощения (σa ) и коэффициент рассеяния (σs );


Сумму первых трех слагающих в этом выражении, определяющих поглощение энергии гамма-квантов, принято называть линейным коэффициентом поглощения:

Можно показать, что для параллельного пучка монохроматического гамма-излучения произведение интенсивности на коэффициент поглощения равно энергии, поглощенной единицей объема облучаемой среды в единицу времени (секунду):


В дозиметрии эта величина носит название мощности дозы излучения (или облучения) и обозначается Pγ

Величина линейных коэффициентов ослабления и поглощения зависит, с одной стороны, от свойств поглощающей среды (от плотности вещества и порядкового номера элементов Z) и. с другой стороны, от энергии квантов гамма-излучения. Коэффициенты µ и µa , увеличиваются пропорционально плотности вещества ρ. а зависимость от Z элементов вещества и энергии гамма-квантов весьма сложная и обычно дается для различных веществ в виде таблиц или графиков. В приложении 2 приведена сокращенная таблица величин половинного слоя ослабления d , линейного коэффициента ослабления µ и поглощения µa для воздуха, тканей животных (мышц), железа и свинца, для энергии гамма-квантов в диапазоне 0,1 — 2,5 Мэв.

Если вещества имеют примерно равный средний порядковый номер элементов, из которых они образованы, то они обладают также одинаковой закономерностью изменения от энергии гамма-квантов и равным количеством энергии, поглощаемой единицей массы вещества (граммом). Так, например, воздух (Zcp,= 7,64), ткани живого организма (Zcp =7,5) и многие органические пластмассы имеют примерно равное Zcp. Все эти вещества являются эквивалентными по свойствам поглощения энергии гамма-излучения и обычно называются «воздухо- эквивалентными». Для этих веществ имеет место соотношение


которое показывает, что их коэффициенты поглощения на единицу массы, носящие название массового поглощения , примерно равны между собой при всех энергиях гамма-квантов. Подобного соотношения нет для веществ с резко различными Zcp, в чем можно убедиться, ознакомившись с таблицей, в которой приведены массовые коэффициенты поглощения для воздуха и свинца при различных энергиях гамма-квантов:


Энергия, поглощенная средой при воздействии на нее гамма-излучения, в конечном итоге расходуется на ионизацию и возбуждение атомов и молекул среды. Однако эта ионизация создается не самими гамма-квантами, а теми вторичными электронами, которые образуются в результате рассмотренных актов взаимодействия гамма-квантов с атомами среды. При этом средняя работа образования одной пары ионов в воздухе такая же, как и для бета-излучения ( ε = 33 эв).

Гамма-излучение, в отличие от альфа- и бета-излучений, не имеет строго определенного слоя полного ослабления. Теоретически полное ослабление гамма-излучения будет происходить при бесконечно толстом слое вещества. Для практической оценки проникающей способности гамма-излучения считается, что средняя длина пробега гамма-квантов соответствует слою вещества, обеспечивающему ослабление гамма-излучения в 2,718 раза. Величина среднего пробега R гамма-квантов определяется формулой


и для гамма-квантов с Eγ = 1 Мэв в воздухе составляет 120 м.

Средняя плотность ионизации в воздухе для гамма-квантов с той же энергией будет иметь величину


Таким образом, обладая большей проникающей способностью, гамма-излучение имеет меньшую ионизирующую способность. Однако большая проникающая способность создает условие облучения от удаленных источников и поэтому на участках местности, зараженных радиоактивными веществами, гамма-излучение является наиболее опасным видом радиоактивного излучения с точки зрения поражения человека при внешнем облучении.

II. ОСНОВНОЙ ЗАКОН РАДИОАКТИВНОГО РАСПАДА. ЕДИНИЦЫ ИЗМЕРЕНИЯ РАДИОАКТИВНОСТИ

Каждый радиоактивный атом рано или поздно претерпевает превращение, однако предугадать момент распада данного атома радиоактивного изотопа невозможно.

Вместе с тем при наличии достаточно большого числа атомов N какого-либо радиоактивного изотопа закономерность радиоактивного распада можно установить экспериментально. Закон, по которому уменьшается число радиоактивных атомов, можно сформулировать в следующей простой форме: половина любого достаточно большого количества атомов радиоактивного изотопа распадается за равные промежутки времени.

Этот промежуток времени называется периодом полураспада Т и является одной из основных характеристик радиоактивного изотопа.

Период полураспада известных радиоактивных изотопов колеблется от ничтожно малых долей секунды до многих миллиардов лет. Так, например, период полураспада ура-на-238 составляет 4,5 миллиарда лет, радия-226 - 1590 лет, стронция-90 — 19.9 года, кобальта-60 — 5,3 года, строя-цня-89 — 53 дня.

Зная период полураспада радиоактивного изотопа, нетрудно определить число не распавшихся атомов для любого момента времени по формуле:


Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5231
Авторов
на СтудИзбе
425
Средний доход
с одного платного файла
Обучение Подробнее