90688 (Антиоксидантная система плазмы крови в норме и при патологии), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Антиоксидантная система плазмы крови в норме и при патологии", который расположен в категории "". Всё это находится в предмете "медицина" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "медицина, здоровье" в общих файлах.

Онлайн просмотр документа "90688"

Текст 2 страницы из документа "90688"

В липидах биомембран всегда присутствуют несколько АО, изменяющих скорость окисления липидов. Между АО может наблюдаться эффект синергизма. Аскорбиновая кислота является синергистом по отношению к токоферолам. Восстанавливая радикалы токоферола до активной фенольной формы, аскорбиновая кислота увеличивает эффективность действия токоферола. Аналогичной способностью регенерировать токофероксильные радикалы обладают и убихинолы. Отдельные компоненты неферментативной АОС могут дополнять или подменять друг друга, осуществляя ингибирование на разной глубине окисления липидов [Бурлакова, Крашакова, Храпова, 1998].

Среди липидных мембранных АО фенольного типа ведущая роль принадлежит токоферолам, поскольку именно они находятся в липидах в устойчивой фенольной форме [Бурлакова, Храпова, 1985].

Реакция с пероксирадикалами липидов на стадии обрыва цепи не является единственно возможным путем воздействия токоферола на скорость ПОЛ. Токоферолы эффективно взаимодействуют с другими АФК (О2, НО, НО2,ROО), выполняющих роль инициаторов окисления. Выводя из сферы реакции АФК, токоферолы тем самым снижают общую скорость окисления за счет уменьшения суммарной скорости инициирования. Токоферолы являются тушителями синглетного кислорода [Шинкарев, 1986].

Витамин Е представлен несколькими гомологами (-, -, -, - токоферолами) из которых наибольшей антиоксидантной активностью обладает -токоферол [Айдарханов и др., 1989]. Эффективность действия -токоферола, как природного аниоксиданта, обусловлена его исключительно высокой антирадикальной активностью (константа скорости его взаимодействия с перекисными радикалами составляет 3,10,3 106 л/моль с, что на 1 – 2 порядка выше соответствующих констант скоростей для многих известных синтетических и биоантиоксидантов) и стабилизацией липидного бислоя мембран путем образования прочных комплексов с полиеновыми жирными ацилами липидов [Бурлакова, Храпова, 1985; Козлов и др., 1983]. -Токоферол взаимодействует с перекисными радикалами в качестве донора водорода: ROO + -Т-ОН ROOH + -Т-О. Радикал токоферола регенерируется аскорбатом.

Время полураспада -токоферола, определенное с помощью изотопной метки варьирует от 5 дней в печени и эритроцитах до 30 дней в клетках головного мозга [Евстигнеев, Волков, Чудинова, 1998].

К гидрофобным антиоксидантам также относятся витамины группы А: А1 (ретинол), А2 и цис-форма витамина А1, отличающиеся дополнительными двойными связями в кольце -ионона. Все соединения представляют собой циклический непредельный одноатомный спирт, состоящий из 6-членного кольца (-ионон), двух остатков изопрена и первичной спиртовой группы. Всасывание происходит в кишечнике в присутствие липидов. В организме легко окисляются с образованием цис- (сетчатка глаза) и транс-альдегидов (остальные ткани); откладываются про запас в печени в форме более устойчивых сложных эфиров: ретинилпальмитат, ретинилацетат и ретинилфосфат. Известны также предшественники (провитамины) витамина А – каротины. Различают -, - и -каротины. Наибольшей биологической активностью обладает -каротин, поскольку он содержит два -иононовых кольца и при расщеплении в кишечнике, и возможно в печени, при участие -каротин-диоксигеназы, в присутствие молекулярного О2, из него образуются две молекулы витамина А. Повышенное содержание -каротина в пищевом рационе и плазме крови оказывает профилактическое действие в отношении целого ряда заболеваний [Алимова, Аствацатурьян, 1975; Рябина, Калмыкова, 1997; Хохлова, Кудрина, 1996; Хазанов, 1997]. Существует предположение, что благодаря наличию двойных связей в молекуле, витамин А может участвовать в окислительно-восстановительных реакциях, поскольку он способен образовывать перекиси, которые в свою очередь увеличивают активность АО ферментов в клетке. Также предполагается участие витамина А в делении и дифференцировке клеток, обусловленного его действием на инициацию репликации; на рост костной ткани – участие в синтезе хондроитинсульфата [Зенков, Меньщикова, 1993]. Неотъемлемым является участие витамина А в фотохимическом акте зрения.

Гидрофильные антиоксиданты

Глутатион:

Глутатион – тиол небелковой природы, встречающийся во всех животных и растительных тканях, а также у ряда микроорганизмов [Меньшиков, Кения, 1993; Косовер, Косовер, 1979]. Глутатион существует в двух формах восстановленный (ГSH) и окисленный (ГSSГ). Восстановленный глутатион – трипептид -L- глутамилцистеинилглицин (-L-Глу- Цис- Гли). Химическая активность ГSH связана с тиоловой группой остатка Цис, являющейся донором протонов для многих соединений. Отдавая протон, ГSH легко окисляется с образованием димера с S-S- мостиком.

Функции глутатиона многообразны: восстановление и изомеризация дисульфидных связей; влияние на активность ферментов и других белков, поддержание барьерных функций мембран, коферментные функции, резервирование цистеина, влияние на биосинтез нуклеиновых кислот и белка, пролиферацию и др. [Meister, Anderson, 1983; Кулинский, Колесниченко, 1990].

Аскорбат:

Витамин С (L-аскорбиновая кислота) по химическому строению является лактоном гулоновой кислоты со структурой, близкой -глюкозе. Благодаря наличию двух асимметричных атомов углерода, аскорбиновая кислота образует четыре стереоизомера, биологической активностью обладает только L-аскорбат.

Присутствие в аскорбате двух двойных связей обуславливает ее способность к обратимому окислению, продуктом которого является дегидроаскорбиновая кислота (ДАК). ДАК устойчивое соединение. В ходе необратимого разрыва лактоновой связи часть ДАК превращается в 2,3 –декетогулоновую кислоту (ДКГК). При окислении ДКГК расщепляется на щавелевую и трионовую кислоты [Дегли, Никольсон, 1973].

1.2.1. Ферментативная антиоксидантная система Супероксиддисмутаза:

Организмы различной степени сложности, утилизирующие кислород в процессах обмена веществ содержат ферменты, обладающие способностью дисмутировать супероксидные радикалы, обрывая тем самым опасную цепь свободнорадикальных превращений в самом зародыше. Эти ферменты называют супероксиддисмутазами (КФ 1.15.1.1., супероксид: супероксид оксидоредуктаза, СОД). СОД являются, в основном внутриклеточными ферментами и лишь небольшая часть СОД- активности обнаружена во внеклеточных жидкостях млекопитающих в виде гликозилированного тетрамера Cu,Zn-СОД с Mr 135 кДа. Этот гликопротеин проявляет сродство к сульфатированным полисахаридам таким, как гепарин и гепарансульфат [Marclund, 1984; Fridovich, 1997].

Каталаза:

Каталаза (КФ I.II.1.6, Н2О2: Н2О2- оксидоредуктаза, КТ), фермент участвующий в детоксикации нерадикальной активной формы кислорода – Н2О2.

По химическому составу является гемопротеином и состоит из 4-х идентичных субъединиц, каждая из которых в качестве простетической группы содержит емм с трёхвалентным железом. Апобелки каталаз животного происхождения видоспецифичны [Вайнштейн, Мелик-Адамян, 1986]. емм в белковой глобуле каталазы находится в гидрофобном окружении.

Глутатионтрансферазы:

Глутатионтрансфераза (КФ 2.5.1.18, донор: восстановленный глутатион трансфераза, ГТ) входит в семейство ферментов, нейтрализующих токсическое влияние различных гидрофобных и электрофильных соединений путем их конъюгации с восстановленным глутатионом.

Глутатионредуктаза:

Во многих реакциях, катализируемых ГП и ГSТ, отдавая протоны, две молекулы ГSH соединяются дисульфидной связью и образуют, так называемый, окисленный глутатион. Для восстановления ГSSГ и, следовательно, рециклирования ГSH, в клетках существует специальный фермент – глутатионредуктаза [Косовер, Косовер, 1979; Мартинчик, Бондарев, 1986] .

Глутатионредуктаза (НAДФH: окисленный глутатион оксидоредуктаза, КФ 1.6.4.2, ГР) ‑ широко распространенный флавиновый фермент, поддерживающий высокую внутриклеточную концентрацию восстановленной формы глутатиона.

Глюкозо‑6‑фосфатдегидрогеназа:

Для восстановления окисленного глутатиона глутатионредуктазой в качестве доноров водорода используется НAДФH, который образуется в пентозофосфатном пути в ходе глюкозо–6–фосфатдегидрогеназной реакции [Атауллаханов, 1981].

ВТОРИЧНАЯ АНТИОКСИДАНТНАЯ СИСТЕМА ЗАЩИТЫ

Аэробные организмы в процессе эволюции приобрели хорошо сбалансированные механизмы, осуществляющие нейтрализацию окислительного действия кислорода и его активных интермедиатов. Эти механизмы (ферментативные и неферментативные), способные поддерживать и восстанавливать друг друга, объединены в единую антиоксидантную систему, которая осуществляет первичную защиту организма (клеток, тканей). Компоненты этой системы взаимодействуют непосредственно с АФК, то есть, стресс-факторами, способными вызывать окислительную модификацию различных биополимеров. Однако защитный потенциал, которым располагают аэробные организмы, наряду с АОС, включает вторичную антиоксидантную систему защиты, или репаративную систему, компоненты которой начинают функционировать при уже случившихся окислительных повреждених , когда появляется необходимость быстрого удаления и восстановления поврежденных клеточных структур.

К репаративной системе относятся липолитические ферменты (липазы, фосфолипазы), протеазы, пептидазы, ДНК-репаразы, эндо- и экзонуклеазы, лигазы.

В процессах перекисного окисления липидов , еммарованных АФК, происходит существенная модификация фосфолипидов плазматической и внутриклеточных мембран. В удалении поврежденных жирнокислотных ацилов мембранных липидов участвуют фосфолипазы А1 и А2, а также фосфолипаза С. Выяснено, что перекисное окисление мембранных липидов может стимулировать липолитическое действие фосфолипазы А2. Исследования показали, что предпочтительными субстратами для данного фермента служат именно перекисные формы фосфолипидов. По-видимому, это может иметь важное значение в процессах мембранной репарации, поскольку предоставляет клетке дополнительную защиту против ПОЛ.

В защите клетки принимают участие и протеолитические ферменты, осуществляющие деградацию окисленных белков, предотвращая тем самым их накопление. В последние годы было установлено, что деградацию окисленных белков осуществляют протеосомы, мультикаталитические протеазные комплексы, состоящие примерно из 28 субъединиц, организованных в цилиндрическую структуру. Комплекс протеаз, селективно деградирующий модифицированные белки (окисленные или помеченные убиквитином), играет главную роль в нелизосомальном расщеплении внутриклеточных белковых молекул. Две главные протеосомы (20S и 26S-частицы) идентифицированы. Только 20S протеосома деградирует окисленные белки. Протеосома содержит три главных активности – трипсиноподобную, химотрипсиноподобную и карбоксипротеазную. Протеолиз протеосомой требует разворачивания полипептидных цепей и транспорта развернутого белка во внутренний активный компартмент комплекса [Tsu-Chung Chang,Wei-Yuan Chou,Gu-Gang Chang,2000].

    1. Антиоксиданты плазмы крови

Защита ферментов и белков, в частности липопротеинов, присутствующих в плазме крови, осуществляется внеклеточной АОС. Эта антиоксидантная система, как и клеточная, характеризуется наличием антиоксидантных ферментов и низкомолекулярных биоантиоксидантов и присутствует не только в плазме крови, но и в межклеточной, спинномозговой, синовиальной жидкостях и лимфе.

К высокомолекулярным соединениям, содержащимся в плазме крови и обладающим антиоксидантной активностью, относятся экстрацеллюлярная СОД, каталаза и ГПО, альбумины, церулоплазмин, трансферрин, лактоферрин, ферритин, гаптоглобин и гемопексин (белок, связывающий емм). По мнению [Halliwell, Gutteridge, 1986] удаление О2 и Н2О2 СОД, каталазой и ГПО вносит небольшой вклад в антиоксидантную активность внеклеточных жидкостей. Авторы считают, что главными защитными системами в плазме являются антиоксидантные белки, связывающие ионы металлов переменной валентности в формы, которые не могут стимулировать свободнорадикальные реакции, либо другим способом, препятствующим ионам металлов принимать участие в таких реакциях. Известно, что церулоплазмин, обладающий ферроксидазной активностью, ингибирует Fe2+-зависимое ПОЛ и образование ОН из Н2О2. ЦП считается основным антиоксидантом плазмы крови. Поскольку ЦП неспецифически связывает Cu2+, он тормозит также Cu2+-стимулируемое образование АФК.

К внеклеточной неферментативной АОС в настоящее время относят ураты и билирубин – метаболиты, образующиеся при расщеплении пуриновых нуклеотидов и емма, а также витамины С, Е и А (каротины), поступающие в организм с пищей.

Компоненты АОС работают в комплексе: ферментативная АОС осуществляет обезвреживание О2 и Н2О2 ингибиторы органических радикалов также участвуют в цепочке взаимопревращений, в результате которых образуется менее активная форма радикала.

ROO (токоферол) (аскорбат) (урат)

Целесообразность существования таких взаимопревращений заключается в более гибкой регуляции и надежности гомеостазирования свободнорадикальных процессов в клетке [Соколовский, 1988].

Церулоплазмин: структура, свойства, биологическая роль

Церулоплазмин (КФ 1.16.3.1, ферро- О2- оксидоредуктаза, ЦП) – металлогликопротеин 2 – глобулиновой фракции, относится к семейству голубых оксидаз. ЦП – белок с большой молекулярной массой, представленный одной полипептидной цепью, но имеющий несколько изоформ и характеризующийся сложной картиной распределения в тканях, а также разнообразием кооперативных форм участия в метаболизме меди и железа в организме [Мжельская, 2000]. ЦП связывает более 95 % общего количества меди, содержащейся в сыворотке крови. Молекула ЦП состоит из 1046 аминокислотных остатков, содержит около 8 % углеводов и 6-7 атомов меди. Пространственная организация и каталитические свойства ЦП определяются присутствием меди [Василец, 1975]. ЦП – это мультифункциональный белок, одна из главных его функций – медьтранспортная, реализуется при взаимодействии со специфическими рецепторами, локализованными на наружной поверхности плазматических мембран клеток. Установлено существование специфического белка-рецептора на мембранах различных клеток, в том числе и на мембранах эритроцитов человека [Пучкова, Вербина и др. 1991]. Рецепция осуществляется путем связывания терминальных остатков сиаловых кислот эритроцитарной мембраны и остатков маннозы и ацетилглюкозамина углеводной части молекулы ЦП. Известно, что лишь 40 % ЦП содержит углеводный фрагмент способный прочно связываться с рецепторами эритроцитов [Саенко , Ярополов , 1991].

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5288
Авторов
на СтудИзбе
417
Средний доход
с одного платного файла
Обучение Подробнее