86074 (Трансформация преобразований), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Трансформация преобразований", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "математика" в общих файлах.

Онлайн просмотр документа "86074"

Текст 2 страницы из документа "86074"

β∩γ = l, а т.к. образ пересечения равен пересечению образов, то g(β)∩g(γ) = g(l) и (g(β), g(γ)) =

(β, γ), если g – первого рода и

(g(β), g(γ)) = = -

(β, γ), если g– второго рода, поэтому

. (12)

3. Трансформация гомотетии движением

Рассмотрим . Пусть g(О)=А. Тогда по свойству неподвижных точек и двойных прямых, А – неподвижная точка преобразования , также мы имеем пучок неподвижных прямых в т. А, поэтому данное преобразование не может быть поворотной гомотетией или гомотетической симметрией. Следовательно, . Найдем коэффициент с, для этого рассмотрим точку М1, пусть |М1,A| = d.

Пусть g(М1) = М, мы знаем, что g(О)=А тогда по свойствам движения |МО| = d.

Пусть , по определению гомотетии 2О| = kd.

Пусть g2) = М3, по свойствам движения 3А| = kd. А т.к. при гомотетии все расстояния изменяются в одно и то же число раз, то с = k. Следовательно,

. (21)

4. Трансформация гомотетии гомотетией

Найдем сначала композицию двух гомотетий , для этого рассмотрим вектор . По свойству гомотетии, , а .

Рассмотрим первый случай, когда lk = 1, тогда мы получили преобразование, при котором вектор перешел сам в себя, а это параллельный перенос . Найдем вектор , для этого найдем образ точки О при этой композиции.

, а : . Тогда . Значит, композиция двух гомотетий при lk = 1 есть параллельный перенос на вектор .

. (22)

Рассмотрим второй случай, когда lk ≠ 1. Найдем неподвижные точки этого преобразования. Пусть точка М – неподвижная, тогда если , а , то М = D, значит, . Но . Т.к. и , то

. Тогда . Т.к. lk ≠ 1, то выразим вектор : . Значит, у данного преобразования только одна неподвижная точка М, причем

, следовательно, точки O, Q, M лежат на одной прямой.

Докажем теперь, что данное преобразование будет гомотетией с центром в т. М и коэффициентом lk. Возьмем произвольную точку Е, пусть , а . Докажем, что (рис. 2). Разложим векторы и по векторам и . По правилу треугольника, , а . Ранее мы выразили вектор через вектор

: , тогда вектор

выражается через вектор следующим образом: . Вектор при гомотетии переходит в вектор , тогда . Значит, . Теперь приведем подобные слагаемые и разложим вектор по векторам и , после этого получим . Вектор при гомотетии переходит в вектор , значит, , а вектор вновь выразим через , тогда . Приведем подобные слагаемые, получим

. По правилу треугольника

, следовательно . Таким образом, мы показали, что преобразование произвольную точку E переводит в точку G такую, что , следовательно, это преобразование – гомотетия с центром в точке М и коэффициентом lk.

. (23)

Сейчас найдем преобразование . , а это по формуле (23) равняется , . Далее применяя формулу (23), получаем

, . Выразим вектор

через вектор . По правилу треугольника, . Мы уже знаем, что , тогда . Приведем подобные слагаемые, получим

. Так как , то . Значит,

. Таким образом,

. (24)

5. Трансформация движения гомотетией

5.1. Трансформация осевой симметрии гомотетией

Рассмотрим . По теореме о неподвижных точках, прямая – неподвижная прямая преобразования , значит, это осевая симметрия с осью m.

. (25)

5.2. Трансформация параллельного переноса гомотетией

, но , . [1] Тогда , что по формуле (22) равняется . Следовательно,

. (26)

5.3. Трансформация произвольного движения гомотетией

Рассмотрим . По теореме о неподвижных точках, неподвижными точками преобразования являются образы неподвижных точек движения f. Докажем, что это – движение. . Рассмотрим точки А и L, |AL| = d. Пусть при гомотетии они переходят соответственно в точки В и М, тогда |BM| = d/k. При движении f точки В и М переходят соответственно в точки С и N, тогда |CN| = d/k, т.к. движение сохраняет расстояния между точками. Пусть при гомотетии точки С и N переходят соответственно в точки D и P, |DP| = kd/k = d. Мы получили, что преобразование сохраняет расстояния между точками, значит, это движение, неподвижными точками которого являются образы неподвижных точек движения f, а т.к. вид движения определяется его неподвижными точками, то - движение того же вида, что и f.

6. Трансформация подобия гомотетией

Рассмотрим , где f – подобие. Известно, что подобие – это композиция движения и гомотетии, тогда , а это, по формулам (2), равняется . Как было доказано в 5.3, - движение того же вида, что и g, а по формуле (24) . Следовательно, - подобие того же вида, что и f. Если f , то

. (27)

7. Трансформация движения подобием

Пусть подобие – это композиция движения g и гомотетии , то движение f под подобием – это . В силу ассоциативности композиции преобразований, . По доказанному в п. 5.3 = f1 - движение того же вида, что и f, а его неподвижные точки – образы неподвижных точек движения f при гомотетии . Тогда . Но f1g = f2 – движение того же вида, что и f1, а его неподвижные точки – образы неподвижных точек движения f1 при движении g. Тогда - движение того же вида, что и f, а его неподвижные точки – образы неподвижных точек движения f при подобии .

8. Трансформация подобия движением

Пусть подобие – это композиция движения f и гомотетии , тогда подобие под движением g по формулам (2) есть . fg = f1 – движение того же вида, что и f, а его неподвижные точки – образы неподвижных точек движения f при движении g, а по формуле (21) . Тогда , а это подобие.

. (28)

9. Трансформация гомотетии подобием

Рассмотрим . В силу ассоциативности композиции преобразований, . По формуле (24), , . Тогда (по формуле (21)). Таким образом,

. (29)

10. Трансформация подобия подобием

Подобие φ под подобием ψ . По формулам (2), . - движение того же вида, что и f, а его неподвижные точки – образы неподвижных точек движения f при подобии ψ. По формуле (29), . Тогда

, (30)

где ξ - подобие такое, что , , а h – движение того же вида, что и f, а его неподвижные точки – образы неподвижных точек движения f при подобии ψ.

11. Трансформация движения аффинным преобразованием

11.1. Трансформация параллельного переноса аффинным преобразованием

Р ассмотрим произвольную точку М, найдем ее образ при преобразовании . При преобразовании g-1 она переходит в точку М1 (рис. 3), которая при параллельном переносе прейдет в точку М2, , далее М2 при преобразовании g перейдет в точку М3. Заметим, что вектор при преобразовании g перейдет в вектор , значит, вся трансформация есть параллельный перенос на вектор .

, (31)

где .

11.2. Трансформация центральной симметрии аффинным преобразованием

Р

g(O)

ассмотрим произвольную точку М, найдем ее образ при преобразовании . При преобразовании g-1 она переходит в точку М1 (рис. 4), которая при центральной симметрии ZO прейдет в точку М2, О – середина М1М2, далее М2 при преобразовании g перейдет в точку М3. Заметим, что точка О при преобразовании g перейдет в середину отрезка ММ3 (т.к. при аффинном преобразовании сохраняется принадлежность точек одной прямой и отношение расстояний между ними), а по теореме о неподвижной точке g(O) будет неподвижной точкой нового преобразования, значит, вся трансформация есть центральная симметрия Zg(O).

. (32)

11.2. Трансформация осевой симметрии аффинным преобразованием

Р ассмотрим произвольную точку М, найдем ее образ при преобразовании . При преобразовании g-1 она переходит в точку М1 (рис. 5), которая при осевой симметрии Sl прейдет в точку М2, , О – середина М1М2, далее М2 при преобразовании g перейдет в точку М3. Заметим, что точка О при преобразовании g перейдет в середину отрезка ММ3 (т.к. при аффинном преобразовании сохраняется принадлежность точек одной прямой и отношение расстояний между ними), и ее образ – О1 – будет лежать на образе прямой l при преобразовании g - g(l). По теореме о неподвижных прямых, прямая g(l) будет неподвижной прямой нового преобразования. Заметим также, что если при осевой симметрии прямые, соединяющие точки с их образами, были параллельны, то и после трансформации они будут параллельны и наклонены под одним и тем же углом к прямой g(l), значит, вся трансформация есть косая симметрия Sg(l).

. (33)

12. Трансформация гомотетии аффинным преобразованием

Р ассмотрим произвольную точку М, найдем ее образ при преобразовании . При преобразовании g-1 она переходит в точку М1 (рис. 6), которая при гомотетии прейдет в точку М2, , далее М2 при преобразовании g перейдет в точку М3. Заметим, что точка О при преобразовании g перейдет в точку О1 на прямой ММ3, причем (т.к. при аффинном преобразовании сохраняется принадлежность точек одной прямой и отношение расстояний между ними), а по теореме о неподвижной точке точка О1 будет неподвижной при новом преобразовании, значит, вся трансформация есть гомотетия .

. (35)

13. Трансформация аффинного преобразования гомотетией

Далее будем предполагать, что аффинные преобразования g и g-1 заданы аналитически.

g: g-1: где образы начала координат и базисных векторов при преобразовании g имеют координаты: O’(d1, d2, d3), (a1, a2, a3), (b1, b2, b3), (c1, c2, c3), а при преобразовании g-1 O’’(n1, n2, n3), (k1, k2, k3), (l1, l2, l3), (m1, m2, m3).

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5221
Авторов
на СтудИзбе
429
Средний доход
с одного платного файла
Обучение Подробнее