85976 (Отношения эквивалентности и толерантности и их свойства), страница 3

2016-07-30СтудИзба

Описание файла

Документ из архива "Отношения эквивалентности и толерантности и их свойства", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85976"

Текст 3 страницы из документа "85976"

Нам понадобятся некоторые простые свойства разбиений на классы эквивалентности, которые мы сформулируем в виде самостоятельных лемм. Мы будем далее использовать некоторые словесные сокращения. Если – эквивалентность и , то мы будем говорить, что и -эквивалентны. Разбиение, соответствующее эквивалентности , мы будем называть -разбиением; -классами и т.п.

Лемма. Для того чтобы , необходимо и достаточно, чтобы каждый -класс содеожался в некотором -классе.

Действительно, если , то из следует . Зчачит, множество всех , -эквивалентных элементу , содержится во множестве всех , -эквивалентных этому . Обратный вывод столь же очевиден.

Для того чтобы необходимо и достаточно, чтобы каждый -класс содержал любой -класс , имеющий с непустое пересечение.

Для доказательства необходимости выберем произвольный элемент . По предыдущей лемме целиком содержится в некотором классе . Но если бы был бы отличен от , то элемент был бы сразу в двух классах -разбиения, что невозможно. Значит, . Для доказательства достаточности нужно только вспомнить, что из по условию вытекает , и применить лемму 1.3.1.

Для того чтобы эквивалентности и были когерентными, необходимо и достаточно, чтобы всякий -класс либо содержался в некотором -классе , либо целиком содержал любой -класс , имеющий с непустое пересечение.

Доказательство. Eсли и когерентны, то , и на , имеем , а на . Тогда по лемме 1.3.1 для каждого класса , содержащегося в , существует такой класс , что . По лемме 1.3.2 каждый класс , содержащийся в , целиком содержит любой класс , имеющий с непустое пересечение. Поскольку и не пересекаются, из 1 вытекает, что всякий класс эквивалентности содержится либо в , либо в ; значит, наше рассуждение охватывает все классы.

Проведем доказательство в обратную сторону. Пусть каждый класс обладает сформулированным в лемме 1.2.3 свойством. Обозначим через объединение всех тех классов , для которых существует такой , что , а через – объединение остальных классов . Ясно, что , и , , где и – сужения отношений и на . Наконец, очевидно, что и , т.е. и когерентны.

Теперь мы подготовили все необходимое для доказательства теоремы 1.3.1. Будем вести доказательство от противного, т.е. предположим, что и не когерентны. Тогда по лемме 1.3.3 существует класс и класс такиее, что , но не один из них не содержит другой. Значит, существуетвует , существует , существует . Имеем следующие соотношения: и , следовательно, и . По транзитивности должно было бы быть также . Однако, соотношения: и – оба не выполнены, так как не лежит с ни в общем -классе, ни в общем -классе. Значит, соотношение не выполнено. Полученное противоречие доказывает теорему.

Замечание. Понятие когерентности имеет смысл для любых отношений и . Но для эквивалентностей когерентность отношений и легко формулируется в терминах классов эквивалентности (лемма 1.3.3).

1.3.4 Лемма

Если и рефлексивны, то

33()

Доказательство. Если , то, в силу , выполнено и соотношение , т.е. . Аналогично получается . Из этих двух включений следует 3.

Теорема. Для того чтобы объединение эквивалентностей и само было отношением эквивалентности, необходимо и достаточно, чтобы

44()

Доказательство. Пусть – эквивалентность. По лемме 1.3.4 выполняется 3. Для доказательства 4 остается доказать

55()

Пусть . Тогда для некоторого имеем и . Следовательно, и . Значит, и 5 доказано. Пусть теперь выполнено 4. Отношение симметрично. По 4 тогда симметрично и ортношение . . По теореме 1.3.3 (см. ниже) получаем, что отношение – эквивалентность. Из 4 вытекает, что и – эквивалентность. Теорема доказана.

Условие, при котором произведение двух отношений эквивалентности и само является эквивалентностью, было получено чешским математиком Шиком в 1954 г.

Для того чтобы произведение отношений эквивалентности и было эквивалентностью, необходимо и достаточно, чтобы и коммутировали.

Доказательство. Пусть сначала

66()

рефлексивно. симметрично. Транзитивность произведения доказывается так: – здесь мы использовали ассоциативный закон для произведения отношений, условие 6, а также транзитивность и рефлексивность отношений и . Итак , но это и означает транзитивность отношения , поскольку рефлексивно. Пусть теперь произведение есть эквивалентность. Тогда .

Легко проверить, что если и – эквивалентности, то и также будут эквивалентностями.

Оказывается, операция (ее иногда называют, объединением эквивалентностей, имея в виду, что обычное объединение эквивалентностей может не быть эквивалентностью) ассоциативна, т.е. является "хорошей" алгебраической операцией.

Для любых транзитивных отношений , и справедлив ассоциативный закон:

77()

Докажем сначала две леммы.

1.3.5 Лемма

Для любых отношений ,

88()

99()

8 вытекает из . 9 доказывается аналогично.

1.3.5 Лемма

Для любых транзитивных отношений , , из и вытекает .

Доказательство теоремы 1.3.4. Из леммы 1.3.5

1010()

1111()

Из 10 и 11

1212()

Из леммы 1.3.5

1313()

Из 12, 13, леммы 1.3.5 и того, что любое отношение вида транзитивно,

1414()

Подобно тому как доказывается 12, доказывается

1515()

Подобно тому как мы из 13 и 13 вывели 14, из 14 и 15 выводится

1616()

Из 16 и аналогично доказываемого "обратного" включения вытекает 7. Теорема доказана.

Нетрудно убедиться, что для любой эквивалентности

1717()

где – диагональное отношение.

Покажем теперь, что операция не дает ничего нового:

Если и – эквивалентности, то

1818()

Доказательство. Заметим сначала, что, учитывая лемму 1.3.4, Применяя транзитивное замыкание к обеим частям, ввиду свойства монотонности транзитивного замыкания имеем

1919()

Далее, применяя распределительный закон получим

2020()

Мы использовали здесь тот факт, что для рефлексивного выполнено включение , а следовательно, . Запишем теперь выражение для транзитивного замыкания, используя 20:

Отсюда ясно, что , т.е.

2121()

Сравнивая включения 19 и 21 получим искомое соотношение 18.

Отсюда вытекает следующий результат, также принадлежащий Шику:

1.3.6 Теорема

Если и – эквивалентности и , то

2222()

В самом деле, по теореме 1.3.3 произведение является эквивалентностью, а стало быть отношение совпадает со своим транзитивным замыканием . Но тогда из теоремы 1.3.5 следует 22.

1.4 Отношения эквивалентности на числовой прямой

Пусть задано отношение на множестве . В случае, когда – числовая прямая, отношение отождествляется с некоторым подмножеством числовой плоскости, т.е. прямого произведения . В этом параграфе будут рассмотрены геометрические свойства множества на плоскости в случае, когда отношение есть эквивалентность.

Согласно определению 1.2.1 отношение называется эквивалентностью, если оно рефлексивно, симметрично и транзитивно. Каждое из этих свойств порождает некоторое геометрическое свойство множества . Координаты точки на плоскости будем обозначать .

1. Рефлексивность. Из того, что для всех , следует, что множество содержит главную диагональ (свойство ).

2. Симметричность. Симметричность означает, что если , то и , т.е. что множество симметрично относительно главной диагонали (свойство ).

3. Транзитивность. Транзитивность означает, что если и , то и . Точка является четвертой вершиной прямоугольника, три вершины которого находятся в точках и . Заметим, что вершина лежит на биссектрисе координатного угла – главной диагонали координатной плоскости. Поэтому геометрически свойство транзитивности можно сформулировать следующим образом:

Множество на плоскости определяет транзитивное отношение тогда и только тогда, когда для любого прямоугольника, одна вершина которого лежит на главной диагонали, а две соседние с вершины принадлежат , вершина , противоположная , также принадлежит (свойство ).

Замечание. Если отношение является симметричным, то геометрическая формулировка транзитивности несколько упрощается. А именно:

Множество на плоскости, симметричное относительно главной диагонали, определяет транзитивное отношение тогда и только тогда, когда для любого прямоугольника, одна вершина которого лежит на главной диагонали, а две другие принадлежат , четвертая вершина также принадлежит (свойство ).

Разница с предыдущим утверждением состоит в том, что вершины, принадлежащие , не обязаны быть соседними с вершиной, лежащей на диагонали. Покажем, что для симметричного свойство , влечет . Пусть, например, вершина, лежащая на диагонали, имеет координаты и и ; покажем, что . В самом деле, в силу симметрии, вместе с имеем . Если в качестве вершины на диагонали взять теперь , а в качестве соседних с ней вершин, принадлежащих , и , то, в силу свойства получаем .

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
426
Средний доход
с одного платного файла
Обучение Подробнее