85931 (Полунормальные подгруппы конечной группы)

2016-07-30СтудИзба

Описание файла

Документ из архива "Полунормальные подгруппы конечной группы", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85931"

Текст из документа "85931"

Дипломная работа

"Полунормальные подгруппы конечной группы"

Содержание

Введение

1 Силовские подгруппы конечных групп

2 Полунормальные подгруппы

2.1 Свойства супердобавлений

2.2 Супердобавления к максимальным подгруппам

2.3 Супердобавления к силовским подгруппам

3 Факторизации групп дисперсивными и сверхразрешимыми подгруппами

3.1 Силовские множества и их свойства

3.2 Дисперсивность и сверхразрешимость факторизуемых

групп

Заключение

Список использованных источников

Введение

В теории конечных групп видное место занимают результаты, связанные с исследованием существования дополнений к выделенным системам подгрупп. В классических работах Шура, Цассенхауза, Гашюца, Л.А. Шеметкова устанавливаются условия, при которых существует дополнение к нормальной подгруппе. В 1968 году в работе для получения существования дополнений к нормальной подгруппе Л.А. Шеметков стал рассматривать добавления. В настоящее время под минимальным добавлением к подгруппе в группе понимается такая подгруппа , что , но для любой собственной подгруппы из . Очевидно, что любая подгруппа конечной группы обладает минимальным добавлением. Ясно также, что дополнение является частным случаем минимального добавления.

Известно, что конечные разрешимые группы можно охарактеризовать как конечные группы, у которых дополняемы все силовские подгруппы. Эта теорема Ф. Холла явилась источником развития одного из направлений теории групп, состоящего в исследовании строения групп с выделенными системами дополняемых подгрупп. Как отмечает в своей монографии С.Н. Черников: «Изучение групп с достаточно широкой системой дополняемых подгрупп обогатило теорию групп многими важными результатами». К настоящему времени выделены и полностью изучены многие новые классы групп. При этом наметилась тенденция к обобщениям как самого понятия дополняемой подгруппы, так и способа выделения системы дополняемых подгрупп. Системы дополняемых подгрупп выделялись, например, с помощью таких понятий как примарность, абелевость, цикличность, нормальность и других свойств конечных групп и их комбинаций, а вместо дополняемости рассматривались –дополняемость, –плотность подгруппа, строго содержащаяся между ними), и др.

Однако условие существования дополнений к отдельным подгруппам является достаточно сильным ограничением. Далеко не все подгруппы обладают дополнениями. Вместе с тем каждая подгруппа обладает минимальным добавлением. Поэтому для исследования строения конечных групп с системами добавляемых подгрупп необходимо вводить дополнительные ограничения на минимальные добавления.

Квазинормальной называют подгруппу группы , которая перестановочна со всеми подгруппами группы . Ясно, что нормальные подгруппы всегда квазинормальны.

Минимальное добавление к квазинормальной подгруппе группы обладает следующим свойством: если – подгруппа из , то – подгруппа группы . Это наблюдение позволяет ввести следующее определение: минимальное добавление к подгруппе группы назовём супердобавлением, если является подгруппой для любой подгруппы из . Ясно, что нормальные и квазинормальные подгруппы обладают супердобавлениями. В симметрической группе силовская –подгруппа обладает супердобавлением, но не является квазинормальной подгруппой. Кроме того, не каждая подгруппа группы обладает супердобавлением.

Всякую факторизуемую группу можно рассматривать как группу с подгруппой и её добавлением , и как группу с подгруппой и её добавлением . Известно, что группа с нормальными сверхразрешимыми подгруппами и не всегда является сверхразрешимой. Отсюда следует, что формация всех сверхразрешимых групп не является классом Фиттинга. Известны следующие случаи, ведущие к сверхразрешимости группы с нормальными сверхразрешимыми подгруппами и :

– подгруппы и имеют взаимно простые индексы;

– группа имеет нильпотентный коммутант;

– подгруппы из перестановочны со всеми подгруппами из , а подгруппы из перестановочны со всеми подгруппами из . Подобная тематика разрабатывалась и в статье А.Ф. Васильева и Т.И. Васильевой.

В настоящей дипломной работе рассматриваются следующие вопросы: строение группы с максимальной полунормальной подгруппой и группы с полунормальной силовской подгруппой; признаки дисперсивности и сверхразрешимости факторизуемых групп с перестановочными циклическими подгруппами в факторах.

1. Силовские подгруппы конечных групп

По теореме Лагранжа порядок каждой группы делит порядок конечной группы. Обратное утверждение не всегда верно, т.е. если натуральное число делит порядок конечной группы , то в группе может и не быть подгруппы порядка .

Пример 1.1 Знакопеременная группа порядка 12 не содержит подгруппу порядка 6.

Допустим противное, пусть – подгруппа порядка 6 в группе . Тогда и . Группа содержит подгруппы

Если , то и , противоречие. Поэтому , а т. к. , то . Противоречие. Поэтому допущение не верно и группа не содержит подгруппу порядка 6.

Вполне естественно возниает вопрос: для каких делителей порядка конечной группы имеется подгруппа порядка .

Положительный ответ на этот вопросв случае, когда – степень простого числа, даёт теорема Силова. Для доказательства теоремы Силова потребуется следующая лемма.

Лемма 1.2 Если порядок конечной абелевой группы делится на простое число , то в группе существует элемент порядка .

Доказательство. Предположим противное, т.е. допустим, что существует абелева группа порядка , простое число делит , то в группе существует элемент порядка . Пусть .

Если делит для некоторого , то – элемент порядка , противоречие. Поэтому все элементы группы имеют порядки, не делящиеся на .

не делится на .

Так как группа абелева, то – подгруппа, и к произведению можно применить следующее

не делится на .

Затем обозначаем через и опять получаем, что не делится на . Через конечное число шагов приходим к выводу, что не делится на . Но

и , т.е. получаем, что не делит . Противоречие. Значит, допущение неверно и лемма спарведлива.

Пусть – простое число. - Группой называют конечную группу, порядок которой есть степень числа . Конечная группа называется примарной, если она является -группой для некоторого простого .

Теорема 1.3 Error: Reference source not found. Пусть конечная группа имеет порядок , где – простое число и не делит . Тогда спарведливы следующие утверждения:

в группе существует подгруппа порядка для каждого ;

если -подгруппа группы и – подгруппа порядка , то существует такой элемент , что ;

любые две подгруппы порядка сопряжены в группе ;

число подгрупп порядка в группе сравнимо с единицей по модулю и делит .

Доказательство. Доказательство проведём индукцией по . По индукции считаем, что для всех групп, порядок которых меньше порядка утверждение теоремы выполняется. Рассмотрим два случая.

Случай 1. Порядок центра делится на .

Так как – абелева группа, то к применима лемма 1.2. По этой лемме в есть элемент порядка . Так как – нормальная подгруппа группы порядка , то факторгруппа имеет порядок и по индукции в группе имеется подгруппа порядка для каждого . По теореме о соответствии в группе имеется подгруппа такая, что и . Теперь , где . Итак, в группе порядков соответственно.

Случай 2. Порядок центра группы не делится на .

Рассмотрим разложение группы в объдинение различных классов сопряжённых элементов

где

– класс сопряжённых с элементов. Различные классы сопряжённых элементов имеют пустое пересечение, а число элементов в классе равно индексу централизатора . Пусть

Централизатор каждого элемента из центра совпадает с группой . И обратно, если централизатор некоторого элемента совпадает с группой, то элемент попадает в центр . Поэтому из получаем

где для каждого . Если все числа делятся на , то из следует, что делится на , что противоречит рассматриваемому случаю. Итак, существует , где такое, что не делит . Поскольку то

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее