85931 (612610), страница 4

Файл №612610 85931 (Полунормальные подгруппы конечной группы) 4 страница85931 (612610) страница 42016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

в котором каждая факторгруппа является либо –группой, либо –группой. Поэтому для такой группы можно индуктивно определить верхний –ряд.

где Здесь – наибольшая нормальная –подгруппа группы – наибольшая нормальная –подгруппа Наименьшее натуральное число для которого называют –длиной группы

В следующей теореме будет использован результат В.Н. Тютянова: если для любого простого делителя порядка группы существуют бипримарные –холловские подгруппы, то группа разрешима. В доказательстве этого результата использовалась классификация конечных простых групп.

Теорема 2.3.6 Если в группе силовская –подгруппа обладает супердобавлением, то –разрешима и для любого .

Доказательство. В начале приведём утверждение из работы: пусть – группа и – её полунормальная подгруппа. Тoгда:

– если –нильпотентна, то нормальное замыкание подгруппы в группе разрешимо.

– если порядок подгруппы группы нечетен, то и нечетен.

Рассмотрим два случая.

1) Пусть . Получаем, что нечетен, где – силовская –подгруппа группы . Следовательно, подгруппа разрешима. Теперь -группа. И группа –разрешима. Пусть – произвольный элемент из , . Тогда из теоремы 2.3.1 и , где – силовская –подгруппа группы . Следовательно, теорема верна в этом случае.

2) Пусть . Имеем и для любой собственной подгруппы из . Из полунормальности силовской –подгруппы группы следует, что в группе существуют –холловы подгруппа группы для каждого . Таким образом, в группе существуют бипримарные –холловские подгруппы для любого нечётного простого делителя , поэтому группа разрешима.

Теорема доказана.

Лемма 2.3.7. Пусть –разрешимая группа.

Если – нормальная подгруппа в то

Если – подгруппа в то

Пусть и – нормальные подгруппы в тогда

Кроме того,

Пусть и – нормальные подгруппы в тогда

Лемма 2.3.8. Пусть –разрешимая группа такая, что , но для всех нормальных неединичных подгрупп группы . Тогда справедливы следующие условия:

в группе существует максимальная -нильпотентная нормальная подгруппа которая является элементарной абелевой -группой;

– единственная минимальная подгруппа в группе имеющая добавление;

Лемма 2.3.9. Если – наименьшее из чисел, принадлежащих и силовская –подгруппа циклическая, то в группе существует нормальная подгруппа такая, что .

Непосредственно из определения –длины получаем следующую лемму.

Лемма 2.3.10 В –разрешимой группе тогда и только тогда , когда факторгруппа –замкнута.

Лемма 2.3.11 Если в группе все –подгруппы имеют супердобавления, то .

Доказательство. Из леммы 2.3.5 следует, что группа –разрешима. Применим индукцию по порядку группы . Тогда по лемме 2.3.8 можно считать, что , в группе подгруппа Фиттинга – минимальная нормальная –подгруппа. Пусть – силовская –подгруппа группы . По условию полунормальна. Тогда , где . Для любой собственной подгруппы из верно, что – подгруппа группы . По лемме 2.1.6 все –подгруппы имеют супердобавления в . Так как , то по индукции . Заметим также, что , поскольку . Теперь по лемме 2.3.10 подгруппа .

Если в подгруппе существуют две максимальные подгруппы и , то и . Следовательно, и . Поэтому в существует единственная максимальная подгруппа и подгруппа примарная циклическая, то есть . Если , то по теореме 2.3.1. Значит .

Пусть – подгруппа порядка из . Тогда , так как . Теперь , поэтому . Значит, и – циклическая группа порядка, делящего . То есть . Теперь .

Лемма доказана.

Из определения –сверхразрешимой группы вытекают следующие две леммы.

Лемма 2.3.12 Всякая –сверхразрешимая группа имеет единичную –длину.

Лемма 2.3.13 Если подгруппа , или –группа и факторгруппа –сверхразрешима, то и группа –сверхразрешима. В частности, если группа –сверхразрешима, то и группа –сверхразрешима.

Теорема 2.3.14 Если в группе все –подгруппы имеют супердобавления, то –сверхразрешима.

Доказательство проведём индукцией по порядку группы . В силу леммы 2.3.13 можно считать, что .

Из леммы 2.3.9 следует, что подгруппа нормальна в группе . Рассмотрим подгруппу такую, что . Подгруппа имеет супердобавления как –подгруппа, поэтому есть подгруппа группы . Теперь и . Следовательно, подгруппа нормальна и в группе . Теперь факторгруппа –сверхразрешима по индукции. Значит и группа –сверхразрешима.

Теорема доказана.

Пример 2.3.15 Если силовская -подгруппа обладает супердобавлением, то не всегда . В симметрической группе силовская –подгруппа полунормальна, но .

Пример 2.3.16 В существует подгруппа порядка , не имеющая супердобавления.

Доказательство. Пусть , где

Предположим, что подгруппа , имеющая порядок , имеет супердобавление в . Тогда существует подгруппа такая, что и – собственная подгруппа группы для каждой подгруппы из , отличной от . Так как делится на , то можно считать, что силовская -подгруппа группы содержится в . Но теперь

и , т.е. не является подгруппой группы , получили противоречие. Утверждение доказано.

Теперь пусть – класс групп, у которых все подгруппы имеют супердобавления. По леммам 2.1.6 и 2.1.7 класс – наследственный гомоморф. Из предыдущего примера вытекает, что не является радикальным классом и не является формацией. Кроме того, не содержит класс вполне факторизуемых групп.

Пример 2.3.17 Пусть – сверхразрешимая группа Шмидта. проверим, что в все подгруппы обладают супердобавлениями. Действительно:

1) ;

2) полунормальна в группе как подгруппа простого индекса;

3) если выбрать произвольную подгруппу , то и , тем более полунормальна;

4) если – произвольная непримарная подгруппа группы , то , где , и .

Таким образом, в все подгруппы, кроме и ей сопряженных, нормальны, тем более имеют супердобавления.

Пример 2.3.18 Пусть – группа диэдра порядка . Тогда

Проверим, что в все подгруппы обладают супердобавлениями.

Подгруппа полунормальна, она даже нормальна.

Подгруппа полунормальна, для неё супердобавлением является подгруппа . Так и для единственной собственной подгруппы из имеем .

Подгруппа полунормальна, так как и для любой подгруппы всегда существует минимальное добавление в группе.

Подгруппа полунормальна, для неё супердобавлением является подгруппа . Так и .

Подгруппа полунормальна, для неё супердобавлением является подгруппа . Так и .

Подгруппа полунормальна, для неё супердобавлением является подгруппа . Так и .

Итак, в нильпотентных группах подгруппы, обладающие супердобавлениями, могут быть ненормальными.

3. Факторизации групп дисперсивными и сверхразрешимыми подгруппами

3.1 Силовские множества и их свойства

Определение 3.1.1 Множество , состоящее из попарно перестановочных силовских –подгрупп из , в точности по одной подгруппе для каждого , вместе с самой группой , называется силовской системой группы .

В своей книге Дерк и Хоукс использовали название «силовский базис» вместо силовской системы . Введем следующее определение.

Определение 3.1.2 Силовским множеством группы назовем множество силовских подгрупп, взятых по одной для каждого простого делителя порядка группы, вместе с единичной подгруппой.

Таким образом, если – группа порядка , то множество будет силовским множеством. Здесь E – единичная подгруппа группы , – силовская –подгруппа группы и все числа различны.

Из теоремы Силова следует, что каждая группа обладает силовским множеством . Если дополнительно для всех подгрупп из , то силовское множество превращается в силовскую систему, см.. Известно, что любая разрешимая группа обладает силовской системой, и наоборот, если в группе имеется силовская система, то группа разрешима. Кроме того, если и – силовские системы разрешимой группы , то для некоторого .

Пусть – некоторое множество подгрупп группы и – нормальная подгруппа группы . Воспользуемся следующими обозначениями:

где – некоторый гомоморфизм группы в некоторую группу .

В разделе 3.1 изучаются свойства силовских множеств, которые необходимы при доказательстве. Для формулировок теорем потребуется следующее

Определение 3.1.3 Пусть – некоторое множество подгрупп группы . Подгруппа группы называется –квазинормальной, если для всех . Если – множество всех подгрупп группы , то –квазинормальную подгруппу называют квазинормальной.

Лемма 3.1.4. Пусть – силовская –подгруппа группы и . Тогда – силовская –подгруппа группы , а – силовская –подгруппа факторгруппы .

Лемма 3.1.5 Пусть – нормальная подгруппа группы .

Если – силовское множество группы , то является силовским множеством факторгруппы .

Если – силовское множество группы , то является силовским множеством подгруппы .

Характеристики

Тип файла
Документ
Размер
14,74 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее