48822 (Решение системы линейных уравнений)

2016-07-30СтудИзба

Описание файла

Документ из архива "Решение системы линейных уравнений", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "48822"

Текст из документа "48822"

Министерство образования и науки Республики Беларусь

Белорусский государственный университет

информатики и радиоэлектроники

Факультет информационных технологий и управления

Кафедра Вычислительных Методов и Программирования

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе

по программированию

на тему:

«Решение системы линейных уравнений»

Выполнил: Принял:

ст.гр.020603 Навроцкий А.А.

Червоный А.В.





Минск 2001г.

Содержание

Введение.

  1. Анализ существующих методов решения задачи.

  2. Описание используемого метода.

  3. Анализ результатов.

Вывод.

Список использованной литературы.

Приложение (распечатка программы, результатов).

Введение

Решение систем линейных алгебраических уравнений (СЛАУ) является одной из основных задач линейной алгебры. Эта задача имеет важное прикладное значение при решении научных и технических проблем. Кроме того, является вспомогательной при реализации многих алгоритмов вычислительной математики, математической физики, обработки результатов экспериментальных исследований.

Применяемые на практике численные методы решения СЛАУ делятся на две группы - прямые и итерационные.

В прямых (или точных) методах решение системы получают за конечное число арифметических действий. К ним относятся известное правило Крамера нахождения решения с помощью определителей, метод последовательного исключения неизвестных (метод Гаусса) и его модификации, метод прогонки и другие. Сопоставление различных прямых методов проводится обычно по числу арифметический действий, необходимых для получения решения. Прямые методы являются универсальными и применяются для решения систем до порядка 103. Отметим, что вследствие погрешностей округления при решении задач на ЭВМ прямые методы на самом деле не приводят к точному решению системы.

Итерационные (или приближенные) методы являются бесконечными и находят решение системы как предел при k последовательных приближений x(k), где k - номер итерации. Обычно задается точность и вычисления проводятся до тех пор, пока не будет выполнена оценка x(k)x(k-1) < . Число итераций n(), которое необходимо провести для получения заданной точности, для многих методов можно найти из теоретических рассмотрений. Качество различных итерационных методов можно сравнивать по необходимому числу итераций n(). Эти методы особенно предпочтительны для систем с матрицами специального вида - симметричными, трехдиагональными, ленточными и большими разреженными матрицами.

Выбор среды программирования.

После проведенного обзора программных средств мы выбрали среду программирования наиболее подходящую нам как очень удобное средство для разработки данного программного продукта. DELPHI 5.0 является наиболее выгодной нам средой программирования.

1. Анализ существующих методов решения задачи

Прямые методы решения СЛАУ. К прямым (или точным) методам решения СЛАУ относятся алгоритмы, которые в предположении, что вычисления ведутся без округлений, позволяют получить точное решение системы за конечное число арифметических действий. Чаще всего решение задач такими методами осуществляется поэтапно: на первом этапе систему преобразуют к тому или иному простому виду, на втором - решают упрощенную систему и получают значения неизвестных.

Запишем систему линейных алгебраических уравнений в развернутом виде:

где x1, x2,..., xn - неизвестные величины, b1, b2,..., bn - элементы правой части. Если определитель системы отличен от нуля, то она имеет единственное решение. Для удобства дальнейших преобразований обозначим элементы правой части аi(n+1) и запишем расширенную матрицу размерами n(n+1), которая содержит всю информацию о системе:

A = .

С этой матрицей можно обращаться так же, как и с системой - переставлять строки, прибавлять кратное одной строки к другой, исключая неизвестные и приводя матрицу к треугольному или диагональному виду.

Приведем формальное описание схем некоторых прямых методов.

Метод Гаусса (схема единственного деления). Алгоритм метода состоит из двух этапов. Первый этап называется прямым ходом метода и заключается в последовательном исключении неизвестных из уравнений, т.е. в приведении матрицы А к верхнему треугольному виду (ниже главной диагонали все нули). Для этого на первом шаге разделим первое уравнение системы на а11 (предположим, что коэффициент а11 0, в противном случае осуществляем перестановку уравнений системы). Обозначим коэффициенты полученного приведенного уравнения , домножим его на коэффициент а21 и вычтем из второго уравнения системы, исключая тем самым х1 из второго уравнения (обнуляя коэффициент а12 матрицы). Поступим аналогично с остальными уравнениями и получим новую систему, матрица которой в первом столбце, кроме первого элемента, содержит только нули, т.е.

.

Первое уравнение в дальнейших преобразования не участвует. Описанный выше процесс исключения неизвестных применим к матрице размерами (n-1) n. После k аналогичных шагов получим k приведенных уравнений с коэффициентами

и матрицу размерами (n - k) (n - k+1), элементы которой вычисляются по формулам

.

Элементы , на которые осуществляется деление, называются ведущими элементами метода Гаусса и не должны равняться нулю. Прямой ход метода Гаусса заканчивается после n шагов определением .

Обратный ход метода Гаусса заключается в последовательном определении компонент решения, начиная с хn и заканчивая х1, по следующим формулам:

Метод Гаусса с выбором главного элемента. Метод заключается в том, что при прямом ходе в алгоритме метода Гаусса на каждом шаге исключения производится выбор наибольшего по модулю элемента в качестве ведущего. Этого достигают перестановкой строк или столбцов матрицы коэффициентов. Наиболее распространённой в вычислительной практике является стратегия выбора главного элемента столбца - нахождение максимального по модулю элемента k-го столбца матрицы и использование его в качестве ведущего элемента на k-м шаге исключения. В этом случае для невырожденных систем гарантируется, что ведущие элементы не равны нулю, и уменьшается погрешность при делении и последующем вычитании при преобразованиях. Рекомендуется также масштабировать предварительно каждое уравнение исходной системы, разделив на его наибольший по абсолютной величине коэффициент. Это делает рост элементов промежуточных матриц ограниченным.

Метод оптимального исключения. В целях экономии оперативной памяти (примерно в 4 раза) операции прямого и обратного хода метода Гаусса выполняются попеременно. На первом шаге после приведения первого уравнения исключается неизвестное x1 из второго уравнения, а затем с помощью приведенного второго уравнения - неизвестное x2 из первого. После (k-1) таких шагов матрица системы имеет вид

.

На k-м шаге, используя первые k уравнений, исключаем неизвестные x1,..,xk из (k+1)-го уравнения. Затем посредством этого уравнения исключается неизвестное xk+1 из первых k уравнений и т.д. В результате прямого хода матрица системы приводится к диагональному виду с единицами на главной диагонали. При этом отпадает необходимость обратного хода, поскольку столбец правой части приведенной матрицы и является вектором решения.

Метод Гаусса-Жордана. Эта модификация метода Гаусса незначительно отличается от метода оптимального исключения. Операции исключения переменных для каждого приводимого уравнения осуществляют не только ниже, но и выше главной диагонали. Операции с первым уравнением системы полностью аналогичны стандартной схеме. Второе уравнение системы после приведения и домножения на соответствующие коэффициенты вычитаем не только из третьего и последующих уравнений, но и из первого. В результате k таких шагов получаем матрицу

.

Как и в методе оптимального исключения, матрица системы приводится к диагональному виду и вектором решения является столбец .

LU - разложение. Матрицу A можно представить в виде произведения нижней треугольной матрицы (включая диагональ) L (lower) и верхней треугольной матрицы U ( upper ), т.е. A=LU. Это равенство равносильно n2 числовым равенствам

.

Разложение матрицы A на множители обычно получают посредством алгоритма, который называется компактной схемой метода Гаусса. Элементы lim и Umi могут быть вычислены по формулам

Тогда решение системы Ax=b сводится к последовательному решению двух систем - Ly=b и Ux=y.

Рассмотренный метод можно применять к решению серии систем с одной и той же матрицей.

Метод простых итераций (Якоби).

Для решения итерационным методом система линейных алгебраических уравнений Ax = b должна быть приведена к виду x = Gx+f , где G - некоторая матрица, f - преобразованный вектор свободных членов. Затем выбирается начальное приближение - произвольный вектор x(0) - и строится рекуррентная последовательность векторов x(1), x(2),..., x(k),... по формуле

.

Для сходимости этой последовательности при любом начальном приближении необходимо и достаточно, чтобы все собственные значения матрицы G были по абсолютной величине меньше единицы. На практике это трудно проверить, и обычно пользуются достаточными условиями сходимости - итерации сходятся, если какая-нибудь норма матрицы меньше единицы, т.е.

или .

Чем меньше норма матрицы G, тем быстрее сходится итерационный процесс.

Преобразование системы можно осуществить, просто решая каждое i-е уравнение относительно xi :

.

Метод Якоби использует следующий алгоритм построения приближений:

.

Если A - матрица с доминирующей диагональю, т.е. , то метод Якоби сходится при любом начальном приближении x(0).

Метод Якоби относится к одношаговым итерационным методам, когда для нахождения x(k+1) требуется помнить только одну предыдущую итерацию x(k). Для исследования сходимости удобнее записывать итерационные методы не в координатной, а в матричной форме, придерживаясь стандартной формы записи итерационных методов.

Канонической формой одношагового итерационного метода решения СЛАУ называется его запись в виде

,

где Bk+1 - матрица, задающая тот или иной итерационный метод, k+1 - итерационный параметр. Числовые параметры k вводят для ускорения сходимости. Способ выбора итерационных параметров определяется при исследовании сходимости метода, когда выясняется при каких значениях параметров метод сходится и когда сходимость будет наиболее быстрой (соответствующие параметры называются оптимальными).

Итерационный метод называют явным, если Bk+1 - единичная матрица. Неявные итерационные методы имеет смысл применять лишь в том случае, когда решение системы уравнений с матрицей Bk требует меньше машинной памяти или времени или алгоритмически проще, чем решение исходной системы.

Методом простой итерации называют явный метод с постоянм параметром

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5139
Авторов
на СтудИзбе
441
Средний доход
с одного платного файла
Обучение Подробнее