48196 (Принципы организации параллелизма выполнения машинных команд в процессорах), страница 5

2016-07-30СтудИзба

Описание файла

Документ из архива "Принципы организации параллелизма выполнения машинных команд в процессорах", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "48196"

Текст 5 страницы из документа "48196"

4.2 Устройство VLIW-процессора

Процессор VLIW, имеющий такую схему, может выполнять восемь операций за один такт и работать при аналогичной тактовой частоте на 80-100% быстрее существующих суперскалярных чипов. Добавочные функциональные блоки могут повысить производительность (за счет уменьшения конфликтов), не слишком усложняя чип. Однако это расширение ограничивается физическими возможностями: количеством портов чтения-записи, необходимым для обеспечения одновременного доступа функциональных блоков к файлу, регистров и взаимосвязей, которое геометрически растет при увеличении количества функциональных блоков. К тому же компилятор должен распараллелить программу до необходимого уровня, чтобы обеспечить загрузку каждому блоку. Процессор выполняет 8 операций за один цикл.

Эта гипотетическая инструкция длиной в 256 бит имеет восемь операционных полей, каждое из которых выполняет традиционную трехоперандную инструкцию ( ). Каждое операционное поле может непосредственно управлять специфическим функциональным блоком при минимальном декодировании.

Аппаратная реализация VLIW-процессора очень проста: несколько небольших функциональных модулей (сложения, умножения, ветвления и т.д.), подключенных к шине процессора, и несколько регистров и блоков кэш-памяти. VLIW-архитектура представляет интерес для полупроводниковой промышленности по двум причинам. Первая причина - теперь на кристалле больше места может быть отведено для блоков обработки, а не, скажем, для блока предсказания переходов. Вторая причина - VLIW-процессор может быть высокоскоростным, так как предельная скорость обработки определяется только внутренними особенностями самих функциональных модулей.

VLIW изымает микрокод из процессора и переносит его в компилятор, в результате чего эмуляция инструкций процессора 8086, таких, как STOS, осуществляется очень эффективно, поскольку процессор получает для исполнения уже готовые макросы. Но вместе с тем это порождает и некоторые трудности, ведь написание микрокода - невероятно трудоемкий и длительный процесс. Архитектуре VLIW может обеспечить жизнеспособность только "умный" компилятор, который возьмет эту работу на себя. Именно это ограничивает использование вычислительных машин с архитектурой VLIW: пока она нашла свое применение только в векторных (для научных расчетов) и сигнальных процессорах.

4.3 Принцип действия VLIW-компилятора

Вновь вспыхнувший в последнее время интерес к VLIW, как к архитектуре, которую можно использовать для реализации вычислений общего назначения, дал существенный толчок развитию техники компиляции для VLIW. VLIW-компилятор упаковывает группы независимых операций в очень длинные слова инструкций таким способом, чтобы обеспечить эффективное их исполнение функциональными модулями за один машинный такт. Компилятор сначала обнаруживает все зависимости между данными, а затем определяет, как их развязать. Чаще всего это делается путем переупорядочивания всей программы, разные ее блоки перемещаются с одного места в другое. Этот подход отличается от применяемого в суперскалярном процессоре, который для определения зависимостей использует специальное аппаратное решение прямо во время выполнения программы (оптимизирующие компиляторы, безусловно, улучшают работу суперскалярного процессора, но не делают его "привязанным" к ним). Большинство суперскалярных процессоров может обнаружить зависимости и планировать параллельное исполнение только внутри базовых программных блоков (группа последовательных операторов программы, не содержащих внутри себя останова или логического ветвления, допустимых только в конце).

Для обеспечения большего параллелизма VLIW-компьютеры должны наблюдать за операциями из разных базовых блоков, чтобы поместить эти операции в одну и ту же длинную инструкцию, их "область обзора" должна быть шире, чем у суперскалярных процессоров. Это обеспечивается путем прокладки "маршрута" по всей программе (трассировка). Трассировка - наиболее оптимальный для некоторого набора исходных данных маршрут по программе для обеспечения правильного результата, гарантирует непересечение этих данных. То есть маршрут, который "проходит" по участкам, пригодным для параллельного выполнения (эти участки формируются, кроме всего прочего, и путем переноса кода из других мест программы), после чего остается упаковать эти участки в длинные инструкции и передать на выполнение. Планировщик вычислений осуществляет оптимизацию на уровне всей программы, а не ее отдельных базовых блоков. Для VLIW, так же, как и для RISC, ветвления в программе являются "врагом", препятствующим эффективному ее выполнению: типичный программный код (тот, что не используется в научных расчетах) содержит около шести ветвлений на инструкцию. В то время как RISC для прогнозирования ветвлений использует аппаратное решение, VLIW оставляет это за компилятором. Компилятор использует информацию, собранную им путем профилирования программы, хотя у будущих VLIW-процессоров предполагается небольшое аппаратное расширение, обеспечивающее сбор для компилятора статистической информации непосредственно во время выполнения программы. Компилятор прогнозирует наиболее подходящий маршрут и планирует его прохождение, рассматривая его как один большой базовый блок, а затем повторяет этот процесс для всех других возникших после этого программных веток, и так до самого конца программы. Он также умеет делать при анализе кода и другие "умные шаги", такие, как развертывание программного цикла и IF-преобразование, в процессе которого временно удаляются все логические переходы из секции, подвергающейся трассировке. Там, где RISC может только просмотреть код вперед на предмет ветвлений, VLIW-компилятор перемещает его с одного места в другое до обнаруженного ветвления (согласно трассировке), но предусматривает при необходимости возможность отката назад, к предыдущему программному состоянию. Соответствующее аппаратное обеспечение, добавленное к VLIW-процессору, может оказать определенную поддержку компилятору. Например, операции, имеющие по несколько ветвлений, могут входить в одну длинную инструкцию и, следовательно, выполняться за один машинный такт. Поэтому выполнение условных операций, которые зависят от результатов предыдущих, может быть реализовано программным способом, а не аппаратным. Цена, которую приходится платить за увеличение быстродействия VLIW-процессора, намного меньше стоимости компиляции. Именно поэтому основные расходы приходятся на компиляторы.

4.4 Трудности реализации VLIW

При реализации архитектуры VLIW возникают и другие серьезные проблемы: VLIW-компилятор должен в деталях "знать" внутренние особенности архитектуры процессора, опускаясь до внутреннего устройства самих функциональных модулей. Как следствие, при выпуске новой версии VLIW-процессора с большим количеством обрабатывающих модулей (или даже с тем же количеством, но другим быстродействием) все старое программное обеспечение, скорее всего, потребует полной перекомпиляции. Надо ли было при переходе, скажем, на процессор 486 избавляться от имеющегося ПО для процессора 386? Конечно, нет, а вот при переходе от одного VLIW-процессора к другому придется, и это разработчик должен учесть при планировании своих затрат - потребуются дополнительные средства на перекомпиляцию. Сторонники VLIW-архитектуры в оправдание предлагают разделить процесс компиляции на две стадии. Все программное обеспечение должно готовиться в аппаратно-независимом формате с использованием промежуточного кода, который окончательно транслируется в машинно-зависимый код только после установки на машине пользователя. Пример такого подхода демонстрирует фонд OSF со своим стандартом ANDF (Architecture-Neutral Distribution Format). Но кросс-платформенное программное обеспечение пока еще только желаемое, а в действительности разработчики ПО для ПК зачастую весьма инертны по отношению к принятию радикально новых технологий. Другая трудность - это по своей сути статическая природа оптимизации, которую обеспечивает VLIW-компилятор. Как поведет себя программа, когда столкнется во время компиляции с непредусмотренными динамическими ситуациями, такими как, например, ожидание ввода-вывода? Архитектура VLIW возникла в ответ на требования со стороны научно-технических организаций, где при вычислениях особенно необходимо большое быстродействие процессора, но для объектно-ориентированных и управляемых по событиям программ она менее подходит, а ведь именно такие программы составляют сейчас большинство в мире ПК. Но и это еще не все: а как можно проверить, что компилятор выполняет такие сложные преобразования надежно и правильно? Пока никак. Вот почему VLIW-компиляторы называют "вещью в себе". Однако решение сложной задачи обеспечения взаимодействия аппаратного и программного обеспечения в архитектуре VLIW требует серьезных предварительных исследований.

Таким образом, достоинства VLIW заключаются в следующем. Во-первых, компилятор может более эффективно исследовать зависимости между командами и выбирать параллельно исполняемые команды, чем это делает аппаратура суперскалярного процессора, ограниченная размером окна исполнения.

Во-вторых, VLIW процессор имеет более простое устройство управления и по­тенциально может иметь более высокую тактовую частоту.

Однако у VLIW процессоров есть серьезный фактор, снижающий их произво­дительность. Это команды ветвления, зависящие от данных, значения которых ста­новятся известны только в динамике вычислений. Окно исполнения VLIW-процессора не может быть очень большим ввиду отсутствия у компилятора информации о зависимостях, формируемых динамически, в процессе выполнения. Этот недостаток препятствует возможности переупорядочивания операций в VLIW процессор. Кроме того, VLIW реализация требует большого размера памяти имен, многовходовых регистровых файлов, большого числа перекрестных связей. Возможен также останов, когда во время выполнения возникла ситуация, отличающаяся от состояния в момент генерации плана выполнения (например, во время выполнения произошло неудачное обращение в кэш-память).

5 Предсказание переходов

Команды, помещенные в окно исполнения, могут быть зависимы по данным. Эти зависимости обусловлены использованием одних и тех же ресурсов памяти (регистров, ячеек памяти) в разных командах. Поэтому для правильного исполнения программы необходимо использование этих ресурсов в предписываемом программой порядке.

Поскольку при суперскалярной обработке необходимо извлекать из памяти не­сколько команд за один такт для загрузки параллельно работающих функциональных устройств, повышенные требования предъявляются к пропускной способности интерфейса «процессор-память». В современных процессорах применяются многоуровневые раздельные кэш-памяти данных и команд.

Для уменьшения потерь процессорных тактов, связанных с промахами при обра­щении к кэш-памяти в случае выполнения команд ветвления, в состав системы кэширования вводятся средства предсказания переходов, основное назначение которых — повысить вероятность наличия в кэшпамяти требуемой команды.

Исполнение условных ветвлений состоит из следующих этапов:

  • распознавание команды условного ветвления;

  • проверка выполнения условия перехода;

  • вычисление адреса перехода;

  • передача управления в случае перехода.

На каждом этапе используются специальные приемы повышения производи­тельности [1].

1. Для быстрого декодирования применяются либо дополнительные биты в поле команды, либо преддекодирование команд при их выборке из кэш-памяти команд.

2. Часто, когда команда уже выбрана из кэш-памяти команд, условие перехода еще не вычислено. Чтобы не задерживать поток команд, в данном случае используется предсказание перехода по одной из нескольких возможных схем.

Механизм предсказания переходов выполняет две основные функции — предсказание программного адреса инструкции, на которую производится переход (для всех инструкций перехода), и предсказание направления ветвления (для инструкций условного перехода). Оба предсказания должны быть выполнены заблаговременно — раньше, чем начнётся декодирование и обработка инструкции перехода — для того, чтобы выборка нового блока инструкций была произведена без потерь лишних тактов либо с минимальными потерями.

Необходимость предсказания адреса «целевой» инструкции вызвана тем, что этот адрес может быть извлечён из x86-инструкции перехода и вычислен только на финальной стадии декодирования, с большой задержкой. Более того, даже простое выделение инструкций переменной длины из считанного блока и поиск среди них инструкций перехода займёт какое-то время. Поэтому в процессорах архитектуры x86 предсказание производят по целому блоку, без разбиения его на составляющие инструкции.

В современных процессорах для предсказания адреса перехода обычно используют специальную таблицу адресов переходов BTB (Branch Target Buffer). Эта таблица устроена подобно кэшу и содержит адреса инструкций, на которые ранее производились переходы. Например, в процессоре P-III таблица BTB имеет размер 512 элементов и организована в виде 128 наборов с ассоциативностью 4. Для адресации набора используются младшие разряды адреса 16-байтового блока инструкций. Если в этом блоке есть инструкции перехода, и если эти инструкции отрабатывали ранее, то алгоритм предсказания может очень быстро найти адрес целевой инструкции в таблице BTB и начать считывание блока, содержащего эту инструкцию. Адреса целевых инструкций помещаются в BTB в момент отставки соответствующих инструкций перехода.

В других современных процессорах размер таблицы BTB достигает 2048 элементов (K8) и 4096 элементов (P-4). Организация данной подсистемы в процессоре K8 несколько отличается от классической и основывается на предварительной разметке блоков инструкций в так называемых массивах селекторов перед помещением их в I-кэш. Эти селекторы привязаны к положению инструкций в I-кэше и при их вытеснении оттуда сохраняются в L2-кэше (в так называемых ECC-битах, предназначающихся для коррекции ошибок). Элементы таблицы BTB также привязаны к положению инструкций в I-кэше и теряются при их вытеснении. Это несколько снижает эффективность предсказания адресов переходов в процессоре K8.

Для предсказания направления условного перехода используется другой механизм, основанный на изучении поведения переходов в программе в процессе её выполнения (своего рода «сбор статистики»). Этот механизм учитывает как локальное поведение конкретной инструкции перехода (например, «как правило, переходит», «как правило, не переходит»), так и глобальные закономерности («чередуется по определённому закону» и т.п.). История поведения инструкций условного перехода записывается в специальных структурах, обычно называемых «таблицами истории переходов» (Branch History Table, BHT). Современные механизмы предсказания переходов обеспечивают правильное предсказание более чем в 90 процентах случаев.

Перечислим некоторые механизмы, используемые в новом процессоре P8, имеющем наиболее совершенную систему предсказания переходов:

  • сочетание локального и глобального механизмов для предсказания «обычных» инструкций перехода с учётом истории их поведения;

  • статический предсказатель для инструкций, совершающих переход в первый раз, основанный на эмпирических закономерностях (например, «переход назад» обычно предсказывается как совершённый, так как может означать переход по циклу, а «переход вперёд» — как несовершённый);

  • предсказатель коротких циклов, распознающий такие переходы и определяющий число итераций цикла (позволяет правильно предсказать момент выхода из цикла);

  • предсказатель косвенных переходов, определяющий целевые адреса для различных исполнений инструкции перехода (с учётом возможного чередования этих адресов);

предсказатель целевых адресов для инструкций выхода из подпрограммы, использующий небольшой аппаратный стек для запоминания адресов возврата (Return Address Stack) для эффективной отработки инструкций Call — Return.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5075
Авторов
на СтудИзбе
455
Средний доход
с одного платного файла
Обучение Подробнее