48196 (Принципы организации параллелизма выполнения машинных команд в процессорах), страница 4

2016-07-30СтудИзба

Описание файла

Документ из архива "Принципы организации параллелизма выполнения машинных команд в процессорах", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "48196"

Текст 4 страницы из документа "48196"

Выдача двух команд в каждом такте требует одновременной выборки и декодирования по крайней мере 64 бит. Чтобы упростить декодирование можно потребовать, чтобы команды располагались в памяти парами и были выровнены по 64-битовым границам. В противном случае необходимо анализировать команды в процессе выборки и, возможно, менять их местами в момент пересылки в целочисленное устройство и в устройство ПТ. При этом возникают дополнительные требования к схемам обнаружения конфликтов. В любом случае вторая команда может выдаваться, только если может быть выдана на выполнение первая команда. Аппаратура принимает такие решения в динамике, обеспечивая выдачу только первой команды, если условия для одновременной выдачи двух команд не соблюдаются. В таблице 3.1 представлена диаграмма работы подобного конвейера в идеальном случае, когда в каждом такте на выполнение выдается пара команд.

Такой конвейер позволяет существенно увеличить скорость выдачи команд. Однако чтобы он смог так работать, необходимо иметь либо полностью конвейеризованные устройства плавающей точки, либо соответствующее число независимых функциональных устройств. В противном случае устройство плавающей точки станет узким горлом и эффект, достигнутый за счет выдачи в каждом такте пары команд, сведется к минимуму.

Рассмотрим следующие этапы выполнения команды:

  • выборка команды - IF;

  • декодирование команды - ID;

  • выполнение операции - EX;

  • обращение к памяти - MEM;

  • запоминание результата - WB.

Тип команды

Ступень конвейера

Целочисленная команда

IF

ID

EX

MEM

WB

Команда ПТ

IF

ID

EX

MEM

WB

Целочисленная команда

IF

ID

EX

MEM

WB

КомандаПТ

IF

ID

EX

MEM

WB

Целочисленная команда

IF

ID

EX

MEM

WB

Команда ПТ

IF

ID

EX

MEM

WB

Целочисленная команда

IF

ID

EX

MEM

WB

Команда ПТ

IF

ID

EX

MEM

WB

Таблица 3.1 Работа суперскалярного конвейера

3.2 Трудности реализации

При параллельной выдаче двух операций (одной целочисленной команды и одной команды ПТ) потребность в дополнительной аппаратуре, помимо обычной логики обнаружения конфликтов, минимальна: целочисленные операции и операции ПТ используют разные наборы регистров и разные функциональные устройства. Единственная сложность возникает, только если команды представляют собой команды загрузки, записи и пересылки чисел с плавающей точкой. Эти команды создают конфликты по портам регистров ПТ, а также могут приводить к новым конфликтам типа RAW, когда операция ПТ, которая могла бы быть выдана в том же такте, является зависимой от первой команды в паре.

Если пара команд состоит из одной команды загрузки с ПТ и одной операции с ПТ, которая от нее зависит, необходимо обнаруживать подобный конфликт и блокировать выдачу операции с ПТ. За исключением этого случая, все другие конфликты естественно могут возникать, как и в обычной машине, обеспечивающей выдачу одной команды в каждом такте. Для предотвращения ненужных приостановок могут, правда, потребоваться дополнительные цепи обхода.

Другой проблемой, которая может ограничить эффективность суперскалярной обработки, является задержка загрузки данных из памяти. В нашем примере простого конвейера команды загрузки имели задержку в один такт, что не позволяло следующей команде воспользоваться результатом команды загрузки без приостановки. В суперскалярном конвейере результат команды загрузки не может быть использован в том же самом и в следующем такте. Это означает, что следующие три команды не могут использовать результат команды загрузки без приостановки. Задержка перехода также становится длиною в три команды, поскольку команда перехода должна быть первой в паре команд. Чтобы эффективно использовать параллелизм, доступный на суперскалярной машине, нужны более сложные методы планирования потока команд, используемые компилятором или аппаратными средствами, а также более сложные схемы декодирования команд.

В общем случае в суперскалярной системе команды могут выполняться параллельно и возможно не в порядке, предписанном программой. Если не предпринимать никаких мер, такое неупорядоченное выполнение команд и наличие множества функциональных устройств с разными временами выполнения операций могут приводить к дополнительным трудностям. Например, при выполнении некоторой длинной команды с плавающей точкой (команды деления или вычисления квадратного корня) может возникнуть исключительная ситуация уже после того, как завершилось выполнение более быстрой операции, выданной после этой длинной команды. Для того, чтобы поддерживать модель точных прерываний, аппаратура должна гарантировать корректное состояние процессора при прерывании для организации последующего возврата.

Обычно в машинах с неупорядоченным выполнением команд предусматриваются дополнительные буферные схемы, гарантирующие завершение выполнения команд в строгом порядке, предписанном программой. Такие схемы представляют собой некоторый буфер "истории", то есть аппаратную очередь, в которую при выдаче попадают команды и текущие значения регистров результата этих команд в заданном программой порядке.

3.3 Историческая справка

В 1993 году корпорация Intel внедрила в массовое производство параллелизм на уровне команд, выпустив процессор Intel Pentium, обладавший способностью декодировать и выполнять команды вычислительного потока параллельно. Годом позже специалисты Intel реализовали двухпроцессорную обработку (два полноценных процессора помещались в два разъема на одной системной плате), создав аппаратную многопоточную среду для серверов и рабочих станций. В 1995 году был представлен процессор Intel Pentium Pro, поддерживавший эффективное объединение четырех процессоров на одной системной плате, что позволило обеспечить более высокую скорость обработки данных в многопоточных приложениях, ориентированных на серверные платформы и рабочие станции.

Появление в 2002 году технологии Hyper-Threading (HT) ознаменовало приход многопоточного параллелизма, то есть возможности выполнять разные потоки приложений одновременно на одноядерном процессоре. Тестирование производительности, проведенное корпорацией Intel, показало, что на процессорах с технологией HT скорость работы некоторых приложений возрастает в среднем на 30%.

Ныне, взяв курс на многоядерные платформы, корпорация Intel стала лидером в процессе перехода на многопоточные и параллельные вычисления на массовых ПК, обеспечив обработку данных на нескольких вычислительных ядрах одного процессора.

Большинство приложений, уже сегодня оптимизированных для параллельного исполнения вычислительных потоков, например, программ, поддерживающих технологию Hyper-Threading или предназначенных к исполнению на рабочих станциях или серверах с двухпроцессорной конфигурацией, при выполнении на многоядерном процессоре демонстрируют прекрасную масштабируемость производительности. К этой категории относятся мультимедийные приложения, научные приложения и системы CAD/CAM [7,9].

Первый суперскалярный МП i960 был выпущен фирмой Intel в 1987 году. Затем были разработаны МП SPARC (1987-1989 годы), MIPS (1988-1989 годы), МПi860 (1989 год)и ряд других суперскалярных МП, в частности:

  1. Процессор Pentium был впервые поставлен фирмой Intel в 1993 году как продолжение семейства МП 80x86. Цель его создания - получение быстродействия RISC-МП и полная совместимость на уровне двоичных кодов с программным обеспечением, созданным для всех МП 80x86.

  2. Группа фирм AIM (APPLE + IBM + MOTOROLA) совместно разработали семейство МП POWER PC и выпустили его первый образец МП 661 в 1993 году.

  3. Фирма DEC в 1992 году для создания мощных рабочих станций выпустила МП 21064 с тактовой частотой 250 Мгц, а затем более мощный МП - 21164.

  4. В 1994 году фирма MIPS Computer, известная разработкой суперконвейерных МП, выпустила первый суперскалярный МП MIPS R8000 (MIPS - Microprocessor Without Interlocked Pipeline Stages), а затем МП R10000.

  5. В 1994 году фирма Sun Microsystem Inc. в продолжение развития своей серии SPARC (Scalable Processor Architecture) выпустила мощный МП UltraSPARC.

  6. В 1994-1995 годах фирмой Hewlett-Packard был выпущен МП PA7200 с высокими показателями быстродействия, предполагается к выпуску МП РА8000.

Все указанные МП являются суперскалярными и поэтому характеризуются рядом общих свойств, в частности:

  1. Формирование группы команд для загрузки конвейеров производится динамически в каждом такте. Для этого аппаратно на этапе предвыборки и дешифрации производится анализ зависимости по данным смежных команд. В конвейеры для параллельного исполнения подбираются независимые команды, при этом допускается изменение порядка выполнения команд.

  2. Все МП используют динамическое прогнозирование ветвлений на основе буфера истории переходов. Иногда используется одновременное выполнение альтернативных ветвей.

  3. Некоторые МП строятся таким образом, что число физических регистров превышает число РОН, определенных архитектурно (РРС620, Mips R10000, P6). Это необходимо для реализации альтернативных ветвей при переходах и для устранения зависимостей по данным, вызванных недостатком РОН. В процессе выполнения команд необходимо производить переименование физических регистров, то есть они выступают в качестве виртуальных.

Большинство указанных МП выпускается в однокристальном исполнении, однако в целях получения более высокого быстродействия для МП PPC 620 использовано 10 кристаллов пяти типов, а для МП R8000 - 4 кристалла трех типов.

Архитектура описанных выше суперскалярных МП приобретает традиционный характер, поэтому предпринимаются попытки освоить новые архитектуры. Одной из наиболее перспективных является разработка МП РА9000, производимая совместно фирмами Hewlett-Packard и Intel. Главная особенность РА9000 состоит в том , что генерация набора команд для одного такта полностью переносится в компилятор, что позволяет достичь высокого уровня оптимальности программы и значительно разгрузить кристалл от схем планирования и упаковки. Тем самым совершается переход к VLIW (Very Long Instruction Word) архитектуре [8,10].

4 VLIW-архитектура

В 1970 г. многие вычислительные системы оснащались дополнительными векторными сигнальными процессорами (VSP - Vector Signal Processor), использующими VLIW-подобные длинные инструкции, прошитые в ПЗУ. Эти процессоры применялись для выполнения быстрого преобразования Фурье (БПФ) и других вычислительных алгоритмов.

Первыми настоящими VLIW-компьютерами стали мини-суперкомпьютеры, выпущенные в начале 1980 года компаниями MultiFlow, Culler и Cydrome, но они не имели коммерческого успеха. Планировщик вычислений и программная конвейеризация были предложены Фишером и Рау (Cydrome). Сегодня это является основой технологии VLIW-компилятора.

Первый VLIW-компилятор компании Multi-Flow 7/300 использовал два АЛУ для целых чисел, два АЛУ для чисел с плавающей точкой и блок логического ветвления. Все это было собрано на нескольких микросхемах. Его 256-битное слово инструкции содержало семь 32-битных кодов операций. Модули для обработки целых чисел могли выполнять 2 операции за один такт длиной 130 нс (то есть всего 4 при двух АЛУ), что при обработке целых чисел обеспечивало быстродействие около 30MIPS (Million Instruction Per Second). Первый VLIW-компьютер Cydrome Cydra-5 использовал 256-битную инструкцию и специальный режим, обеспечивающий выполнение инструкций как последовательности из шести 40-битных операций. Поэтому его компиляторы могли генерировать смесь параллельного кода и обычного последовательного. Существует мнение, что в то время, как эти VLIW-машины использовали несколько микросхем, процессор Intel i860 стал первым VLIW-процессором на одной микросхеме. При установке правильной последовательности операций этот процессор в большей степени зависит от компилятора, нежели от аппаратуры.

Несмотря на то, что архитектура VLIW появилась еще на заре компьютерной индустрии (Тьюринг разработал VLIW-компьютер еще в 1946 году), она до сих пор не имела коммерческого успеха. Однако значительного повышения производительности и скорости вычислений можно добиться лишь путем переноса интеллектуальных функций из аппаратного обеспечения в программное (в компилятор). В целом успех этого мероприятия будет определяться в основном программными средствами, именно в этом и состоит проблема.

4.1 Аппаратно-программный комплекс VLIW

Архитектура VLIW представляет собой одну из последних реализаций концепции внутреннего параллелизма в процессорах. Их быстродействие можно повысить двумя способами: увеличив либо тактовую частоту, либо количество операций, выполняемых за один такт. В первом случае требуется изобретение "быстрых" технологий (например, использование арсенида галлия или кремния на сапфире) и применение таких архитектурных решений, как глубинная конвейеризация (конвейеризация в пределах одного такта, когда в каждый момент времени задействован весь кристалл, а не отдельные его части). Для увеличения количества выполняемых за один цикл операций необходимо на одной микросхеме разместить множество функциональных модулей обработки и обеспечить надежное параллельное исполнение машинных инструкций, что дает возможность включить в работу все модули одновременно. Надежность в таком контексте означает, что результаты вычислений будут правильными. Для примера рассмотрим два выражения, которые связаны друг с другом следующим образом: А=В+С и В=D+Е. Значение переменной А будет разным в зависимости от порядка, в котором вычисляются эти выражения (сначала А, а потом В, или наоборот), но в программе подразумевается только одно определенное значение.

Планирование порядка вычислений довольно трудная задача, которую приходится решать при проектировании современного процессора. В суперскалярных процессорах (процессор с двумя и более конвейерами, что позволяет выполнять более одной команды за один такт в идеальных условиях) для распознавания зависимостей между машинными инструкциями применяется специальное довольно сложное аппаратное решение (в процессоре Pentium Pro, например, для этого используется буфер переупорядочивания инструкций). Однако размеры такого аппаратного планировщика при увеличении количества функциональных модулей обработки возрастают в геометрической прогрессии, что, в конце концов, может "съесть" весь кристалл процессора. Поэтому суперскалярные проекты остановились на отметке пять-шесть управляемых за цикл инструкций. При другом подходе можно передать все планирование программному обеспечению, как это делается в конструкциях с VLIW. "Умный" компилятор должен выискать в программе все инструкции, которые являются совершенно независимыми, собрать их вместе в очень длинные строки (длинные инструкции) и затем отправить на одновременное исполнение функциональными модулями, количество которых строго равно количеству операций в такой длинной инструкции. Очень длинные инструкции обычно имеют размер от 256 бит до 1024 бит. Размер полей, кодирующих операции для каждого функционального модуля, в такой метаинструкции намного меньше.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее