48163 (Представление текстовой и графической информации в электронном виде)

2016-07-30СтудИзба

Описание файла

Документ из архива "Представление текстовой и графической информации в электронном виде", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "48163"

Текст из документа "48163"

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ

УНИВЕРСИТЕТ ИМЕНИ В.Г. БЕЛИНСКОГО

Кафедра «Вычислительных систем и моделирования»

КУРСОВАЯ РАБОТА

по дисциплине «Вычислительные системы, сети и телекоммуникации»

Тема: «Представление текстовой и графической информации в электронном виде»

Выполнил: студентка гр. ПЭ-31 А-1

Васькова Е.О.,

студентка гр. ПЭ-31 А-1

Гусева Д.И

Проверил: к.т.н., доцент Коннов Н.Н.

2007

Для выполнения работы в текстовом редакторе был набран текст лекций по курсу «Вычислительные системы, сети и телекоммуникации». Все изображения были созданы в графическом редакторе Microsoft Office Visio.

На основе подготовленных документов создан электронный учебник, который можно просмотреть на прилагаемом диске. Некоторые фрагменты учебника представлены в приложении.

Вычислительная система

Вычислительная система - комплекс аппаратных систем, решающих задачи на основе программы.

Вычислительные устройства по принципам решения задач и представления информации делятся на:

  1. Аналоговые

Обрабатываемая информация представляется в виде непрерывно изменяющихся физических параметров. Обработка информации представляет собой воспроизведение сигналов, параметры которых изменяются в соответствии с определенным законом.

  1. Цифровые

Манипулируют символами (цифрами). Необходимо иметь физические устройства, позволяющие различать устойчивые состояния (например, замкнутая и незамкнутая цепь).

  1. Предтеча современных компьютеров - «аналитическая машина», над созданием которой в 1830-е годы работал Чарльз Бэббидж, считывала программы с бумажных носителей – перфокарт. Данные хранились на специальном механическом устройстве.

  2. В конце 19 веке появились арифмометры, разработанные на основе колеса Однера, которое имело переменное количество зубцов и 10 устойчивых состояний.

  3. В начале 20 в. (период Первой Мировой войны) были разработаны электронно-вычислительные системы

Полный промышленный цикл обработки перфокарт реализовал Герман Холлерит – создатель одной из фирм прародителей корпорации IBM.

  1. Во время Второй Мировой войны Генрих Цузер разработал машину Ц-3 на основе электромагнитного реле.

  2. Современный этап

Первое поколение (1949-1958)

Основным активным элементом ЭВМ первого поколения является электронная лампа.

Для построения оперативной памяти применялись ферритовые сердечники. В качестве устройств ввода/вывода (УВВ) сначала использовалось стандартная телеграфная аппаратура, а затем специально для ЭВМ были разработаны электромеханические УВВ на перфокартах и перфолентах. Машины этого поколения характеризуются огромными размерами, малым быстродействием, малой емкостью оперативной памяти (ОП), невысокой надежностью; недостаточно развитым программным обеспечением (ПО). Первой настоящей ЭВМ считается ENIAC.

Американский математик Джон фон Нейман сформулировал основные принципы программного управления:

- Информация, обрабатываемая машиной ( данные и команды), должна представляться двоичным кодом

- Каждая команда задает вид операции и адреса операндов в памяти.

- Команды и данные располагаются в ячейках памяти. Память машины имеет линейную структуру.

- Программа - упорядоченная последовательность команд, при этом реализуется естественный порядок выполнения команд (в порядке возрастания адресов ячеек памяти). Для нарушения этого порядка применяются специальные команды передачи управления.

Второе поколение (1959-1963)

Основной активный элемент - транзистор. По сравнению с первым поколением уменьшены размеры, стоимость, масса и потребляемая мощность, повышена надежность и быстродействие, увеличен объём памяти. Отличительные черты: специализация, появление алгоритмических языков, многопрограммных ЭВМ, применение УВВ на магнитных носителях.

Третье поколение (1964-1976)

Характеризуется широким применением интегральных схем (ИС). ИС (кристалл) - это законченный функциональный блок, соответствующий сложной транзисторной схеме, вытравленной на поверхности кремниевого кристалла. Позднее стали применяться ИС малой (10-100 компонентов на кристалл) и средней (100-1000 компонентов на кристалл) степени интеграции. Отличительные черты: увеличение количества используемых УВВ, дальнейшее развитие ПО, особенно операционных систем, возможность удаленного доступа пользователей к ЭВМ, виртуальное использование ЭВМ в режиме разделения времени, применение методов автоматического проектирования; унификация ЭВМ.

Четвёртое поколение (1977-1990г.г.)

Характеризуется применением больших интегральных схем (БИС) и сверхбольших интегральных схем (СБИС). Отличительные черты: тенденция к унификации ЭВМ и развитию мини- и микроЭВМ, использование быстродействующих систем памяти и Моп-технологий, создание машин, представляющих единую систему (ЕС ЭВМ), появление первых персональных компьютеров и рабочих станций, основной носитель информации - гибкий магнитный диск.

Пятое поколение (настоящее время)

ЭВМ пятого поколения (кроме высокой производительности и надежности при более низкой стоимости) должны удовлетворять следующим функциональным требованиям:

- обеспечить простоту применения ЭВМ путем реализации систем ввода/вывода информации голосом, диалоговой обработки информации с использованием естественных языков;

- возможности обучаемости, ассоциативных построений и логических выводов;

- упростить процесс создания программных средств путем автоматизации синтеза программ по спецификациям исходных требований на естественных языках;

- улучшить основные характеристики и эксплуатационные качества ВТ для удовлетворения различных социальных задач,

- улучшить соотношения затрат и результатов, быстродействия, легкости, компактности ЭВМ;

- обеспечить их разнообразие, высокую адаптируемость к приложениям и надежность в эксплуатации.

Структура современной машины

Обобщенная структура простейшей фон-неймановской ЭВМ

А – адресная шина

Д – шина данных

РК – регистр команд

ЗПР – запросы прерывания

СОЗУ – сверхоперативная память

УУ – устройство управления

Любая ВМ может быть разделена на три части:

- обрабатывающая часть – процессор (ЦП);

- оперативное запоминающее устройство (ОЗУ);

- периферийные устройства (ПУ).

В состав ЦП входят:

- арифметико-логическое устройство (АЛУ), обрабатывающее данные;

- внутренняя память процессора (сверхоперативная память - СОЗУ), которая используется для хранения операндов, адресов, в том числе и очередной команды на специальном регистре СК (счётчик команд). Делится на программно доступную (регистры, которые видны программисту) и скрытую;

- устройство управления (УУ), которое выделяет последовательность сигналов контролирующих передачу информации между остальными устройствами в соответствии с содержимым регистра команд (РК), на который принимается очередная команда.

Разрядность процессора – максимальная разрядность данных, обрабатываемых одной командой.

Адресное пространство процессора – максимальное количество ячеек ОП, которые могут им адресоваться. Если rA- разрядность, то адресное пространство 2rA.

Ширина выборки – количество данных, которые могут считываться одновременно в ЦП из ОП.

Производительность – количество задач, решаемых в единицу времени.

Быстродействие – время выполнения одной операции.

Выполнение операции включает в себя следующие фазы:

ВК (выборка команды): процессор вычисляет адрес ячейки памяти, где хранится команда(этот адрес он берет из СК), обращается к памяти, считывает команду, помешает на внутренний регистр памяти, вычисляет адрес следующей команды(модифицирует СК).

ДК (дешифрация команды): по значению кода определяется раскладка полей (формат) команды, в соответствии с чем настраиваются устройства.

ВО1, ВО2, …(выборка операнда):вычисление адресов операндов и обращение к ним, помещение операндов из ОП в регистры СОЗУ.

ИК (исполнение команды): действия над операндами.

ЗР (запись результата): полученный результат записывается в регистр памяти.

Фазы ВК, ДК и ИК являются обязательными. После ЗР выполняются фазы следующей команды или фаза прерывания.

Структура команды:

Структурная схема микропроцессора intel8086

Первые процессоры, появившиеся в персональных ЭВМ были 16-разрядные. Процессор, стоявший в компьютере IBM PC, был изготовлен фирмой Intel, назывался i8086 и работал на тактовой частоте 4,77 МГц. Процессоры следующего поколения, 80186, 80188, 80286, тоже были 16-ти разрядными, хотя имели более высокую тактовую частоту и возможность работы с памятью выше 1 Мбайта в защищенном режиме .

Коротко 16-ти битные процессоры можно описать:

  • Разрядность ядра - 16 бит

  • Число регистров - 14

  • Разрядность шины данных : внутренняя - 16 или 8 бит, внешняя - 16 бит

  • Адресная шина - 20 бит (память до 1 Мбайта)

  • Внутренняя кэш-память - отсутствует

  • Внешняя шина для подключения устройств ввода/вывода - ISA (Industry Standard Architecture), 16 бит, 8 МГц

На рисунке представлена структурная схема микропроцессора 8086, в состав которого входят: устройство управления, арифметико-логическое устройство, блок преобразования адресов и регистры.

Устройство управления дешифрирует коды команд и формирует необходимые управляющие сигналы.

Арифметико-логическое устройство осуществляет необходимые арифметические и логические преобразования данных. Выполнение арифметических операций фиксируется флагом:

CF – признак переноса из старшего разряда при выполнении операции

ZF – признак нуля: 1 - число = 0

AF – признак дополнительного переноса, сигнал, возникающий между тетрадами в двоичной операции.

SF – признак знака: 1 - число 0

PF – признак четности;

ОF – признак переполнения;

DF – признак направления;

IF – признак прерывания;

ТF – признак трассировки;

В блоке преобразования адресов формируются физические адреса данных, расположенных в основной памяти. Наконец, регистры используются для хранения управляющей информации: адресов и данных.

Всего в состав микропроцессора i8086 входит четырнадцать 16-битовых регистров (см. рис.):

a) четыре регистра общего назначения (регистры данных):

AX - регистр-аккумулятор,

BX - базовый регистр,

СХ - счетчик,

DX - регистр-расширитель аккумулятора (по умолчанию для хранения данных в командах умножения и деления);

б) три адресных регистра:

SI - регистр индекса источника,

DI - регистр индекса результата,

BP - регистр-указатель базы (позволяет прочитать произвольный элемент стека);

в) три управляющих регистра:

SP - регистр-указатель стека (адрес последнего числа, записанного в стек),

IP - регистр-счетчик команд (указывает адрес команды, подлежащей выполнению, т.е. следующей),

регистр флагов;

Данные регистры составляют сверхоперативную память.

г) четыре сегментных регистра:

CS - регистр сегмента кодов,

DS - регистр сегмента данных,

ES - регистр дополнительного сегмента данных,

SS - регистр сегмента стека.


Способы адресации

Процессор при обработке программы взаимодействует с оперативной памятью, которая представляется единым массивом однобайтных ячеек, обращение к которым происходит по их номерам (физическим адресам). Число ячеек зависит от разрядности шины адреса и составляет для процессора i8086 1Мбайт.

Для обращения к памяти процессор предварительно помещает адрес ячейки в один из своих регистров. Шестнадцатиразрядный процессор i8086 не может хранить в своих регистрах двадцатиразрядный адрес, поэтому в нем применена так называемая сегментация памяти, которая заключается в том, что истинный, физический адрес ячейки хранится в двух регистрах. Один из них – сегментный (хранит адрес начала блока памяти). Второй регистр хранит величину смещения адреса требуемой ячейки от начала сегмента. Адрес ячейки памяти записывается в виде двойного слова (4 байта): :.

Команды могут формировать адреса операндов различными способами. Реализованы следующие режимы адресации:

1. Регистровая прямая (посылочная) - операнд находится в регистре.

Обозначение - , - АХ, ВХ, СХ, DX, SI, DI, BP, SP, AL, BL, СL, DL, AH, BH, CH, DH.

Пример: (приведен операторами языка ассемблера)

mov АХ,SI ; переслать содержимое регистра SI в регистр АХ.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Нет! Мы не выполняем работы на заказ, однако Вы можете попросить что-то выложить в наших социальных сетях.
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
4123
Авторов
на СтудИзбе
667
Средний доход
с одного платного файла
Обучение Подробнее