47882 (Организация автоматизированного рабочего места 3D-аниматора), страница 4

2016-07-30СтудИзба

Описание файла

Документ из архива "Организация автоматизированного рабочего места 3D-аниматора", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "47882"

Текст 4 страницы из документа "47882"

Рисунок 21 - Изменения в виде кривых движения

Кривые движения (Рисунок 22) - это, собственно, представление перемещения или трансформации объекта в виде графиков для каждой из его координат XYZ. Чтобы лучше понять суть этого процесса анимации, придётся вспоминать школьный курс математики. С другой стороны, такие кривые и их редактирование, как правило, чрезвычайно наглядны, и когда понимаешь взаимозависимости, проблем особых уже не возникает.

Рисунок 22 - Кривые движения

Кривые движения (Loc), вращения (Rot) и изменения размеров (Scale), представленные на одном графике. Это всё то, что претерпевает наша фигура. Скриншоты рабочего окна программы Blender 3D.

Кривые очень удобно использовать для точного контроля над каждым параметром; управление ими в современных пакетах реализуется достаточно наглядно, так, чтобы было минимум путаницы. Но без постоянного учёта множества всяких параметров, качественной 3D анимации сделать не получится.

В некоторых пакетах - Blender, например, - функционал ключевых кадров и кривых объединены в одно. В других пакетах помимо кривых отдельно существует ещё и временная таблица, где все изменяемые при анимации параметры представляются как события на временной шкале.

Ну, и наконец, траектории - это, собственно, они и есть: отдельно задаётся путь перемещения объекта (с направлением), определяется его скорость и возможные изменения ориентации объекта в пространстве, каковая регулируется обычно всё теми же вышеупомянутыми кривыми.

Описанные методы и способы как правило используются в комбинациях, особенно, когда речь идёт о более-менее сложной анимации.

Применяются они и при скелетной анимации, но о ней разговор пойдёт в следующей части.

2.9 Скелетная анимация, прямая и инверсная кинематика

Скелетная анимация – это тот самый случай, когда совсем общую теорию объяснить очень просто, а вот добиться реальных результатов, тем более, результатов серьёзных оказывается очень сложно.

Скелетная анимация – это анимирование 3D-фигуры посредством относительно небольшого количества управляющих элементов, и внешне и по принципу работы, напоминающие скелет – или строение марионетки.

Как он «изготавливается», мы рассматривали в статье «Риггинг». От того, насколько разумно и правильно риггинг был выполнен, зависит и результаты первых попыток анимировать что-либо. Если иерархия костей сделана как надо, то и поведение цепочки, равно как и привязанных к ней вершин, будет «жизнеподобным». Ошибки же могут привести к совершенно нелепым последствиям: ноги могут «уехать» за голову, например.

При умелом использовании скелетная анимация позволяет значительнейшим образом экономить на усилиях – естественно, гораздо проще двигать несколько «костей», нежели тягать с места на место группы вершин и полигонов.

Существуют два основных типа планирования движения «скелета» – это прямая кинематика (Forward Kinematics - FK) и инверсная, или обратная кинематика (Inverse Kinematics – IK). Их также выбирают на этапе риггинга, – впрочем, этот процесс от скелетной анимации вообще неотделим.

Создадим отдельно взятую цепочку «костей» (Рисунок 23) – без добавления мяса пока что. Все операции осуществляются в пакете Blender3D, скриншоты, стало быть, тоже оттуда.

Рисунок 23 - Отдельно взятая цепочка «костей»

Видим четыре кости, где первая - «родительская», все последующие – находятся в последовательной иерархической зависимости от предыдущих.

В случае если использовать прямую кинематику, то при попытке сдвинуть какие-либо звенья (кости) ниже уровнем, чем родительская, приведут к тому, что двигаться будут только нижестоящие.

Повернули кость 2, вместе с ней повернулись (но остались на одной прямой) кости 3 и 4 (Рисунок 24).

Рисунок 24 – Поворот «костей»

Это прямая кинематика: перемещение старших по иерархии костей приводят к тому, что перемещаются и младшие.

При использовании обратной кинематики алгоритм получается ровно противоположный (Рисунок 25):

Рисунок 25 - Использовании обратной кинематики

Задав режим автоматического выбора инверсной кинематики (Blender делает вид, что подбирает оптимальный вариант, и иногда вполне успешно), сдвигаем самую младшую в иерархии кость 4; вся цепочка послушно изогнулась.

Звено цепочки, изменение положения которого приводит к изменению положения других звеньев, называется effector (Рисунок 26) (существует диковинный перевод «влиятель»).

Рисунок 26 – Звено effector («влиятель»)

Подвигали кость 3. Звенья 1-2 поменяли своё положение, а 4 – осталось на одной прямой со звеном 3. Кость 3 теперь является effector'ом, и всё, что находится ниже по иерархии, подчиняется алгоритмам прямой кинематики.

Инверсная кинематика применяется главным образом там, где требуется точное расположение конечного звена в нужной точке (например, чтобы при ходьбе ноги персонажа не «проскальзывали» по поверхности или не утопали в полигонах, изображающих твердь земную).

Самое же важное – это грамотная расстановка ограничителей (constraints) для подвижных элементов на этапе риггинга. Конечности модели персонажа должны вести себя «в разумных антропоморфических пределах», например, чтобы колени не прогибались не в ту сторону или пальцы рук не заворачивались за запястье.

Далее начинается процесс автоматизации движений (Рисунок 27) – тут всё делается так же, как и при обычной анимации. Задаются ключевые кадры для отдельных управляющих элементов, и они тащат за собой все остальные. При этом анимационные пакеты вполне могут регистрировать ключевые положения только для индивидуальных костей, для всех звеньев разом или для отдельных их групп. При этом генерируются кривые движения/вращения/масштаба для каждого элемента, участвующего в анимации. Современные пакеты, разумеется, предоставляют в избытке средства, позволяющие экономить на усилиях – например, «глобализовать» управление сразу множеством элементов, группируя их более-менее удобным способом. На скриншоте ниже представлено всё рабочее окно Blender с активированными Action Editor и Timeline Editor.

Рисунок 27 - Процесс автоматизации движений

Тем не менее, сделать качественную анимацию – чудовищно кропотливый процесс, требующий учитывать огромное количество факторов влияния отдельных элементов друг на друга. Как уже сказано в статье про риггинг, при анимации антропо- или зооморфных персонажей следует иметь в виду анатомические особенности их прообразов в реальном мире и соответствующую взаимосвязь элементов.

2.10 Частицы в 3D-графике: Particle Systems

Системы частиц (Рисунок 28) - ещё один инструмент, который облегчает 3D-художникам жизнь (и сильно осложняет её компьютерам).

Рисунок 28 - Системы частиц

В качестве примера можно привести старые компьютерные игры, относящиеся к ранней эпохе 3D: если кто помнит, факельный огонь в Quake и Hexen II (обе игры построены на одном и том же движке) был реализован в качестве вращающихся светящихся многогранников, по форме «напоминающих» пламя. Сейчас, конечно, так никто не делает; для решения задач такого рода применяются частицы (particles).

Пламя в Quake (точнее, мод Dark Places): слева - в виде многогранников, справа - в виде частиц. Particle System – это технология массовой визуализации подобных объектов, в массе своей формирующих более крупномасштабные тела, не имеющие чётких геометрических границ (облака, дым/пар, взрывы, снег, дождь, огонь) и/или сыпучие тела (песок, зерно, пыль, волосы, трава).

То есть всего того, что визуализировать «стандартными методами» – через моделлинг – слишком сложно и просто нерационально: моделировать каждую травинку или каждый волос – лишняя трата времени и сил.

Математически каждая частица представляет собой материальную точку с назначенными атрибутами, как то: скорость, цвет, ориентация в пространстве, угловая скорость, и т. п. В ходе работы программы, моделирующей частицы, каждая частица изменяет своё состояние по определённому, общему для всех частиц системы, закону (физическому).

Например, частица может подвергаться воздействию гравитации, менять размер, цвет, скорость (в том числе под внешним воздействием) и так далее; после проведения всех расчётов, частица визуализируется. Частица может быть визуализирована точкой, треугольником, спрайтом, или даже полноценной трехмерной моделью.

В целом, системы частиц - это достаточно экономный в плане трудозатрат способ реалистичной визуализации физических явлений. При этом единого стандарта реализации системы частиц в мире на данный момент не существует, и едва ли стоит ожидать её скорого появления, учитывая, что на рынке присутствует немало конкурирующих коммерческих пакетов для работы с частицами, и к тому же многие студии, занимающиеся компьютерной анимацией и спецэффектами для кино, пишут ещё и свои собственные решения. Например, на последнем CG Event представители студии A-VFX, рассказывая о мультфильме «Маша и Медведь», неоднократно подчёркивали наличие у них собственной технологии визуализации волос, с помощью которой в мультфильме были выполнены не только сами волосы/мех, но и трава и пр.

3. Понятие трехмерной графики и программы 3D-моделирования


3.1 Понятие трехмерной графики

Для создания трехмерной графики используются специальные программы, которые называются редакторы трехмерной графики, или 3D-редакторы. Результатом работы в любом редакторе трехмерной графики, является анимационный ролик или статическое изображение, просчитанное программой. Чтобы получить изображение трехмерного объекта, необходимо создать в программе его объемную модель.

Для отображения трехмерной модели используются четырех окнах проекций (Рисунок 29). Во многих редакторах трехмерной графики, что дает наиболее полное представление о геометрии объекта. На чертеже объект представлен сверху, сбоку и слева. Однако в отличие от чертежа на бумаге, вид объекта в каждом окне проекций можно изменять и наблюдать: как выглядит объект снизу, справа и т. д. Кроме этого, можно вращать все виртуальное пространство в окнах проекций вместе с созданными в нем объектами. Работа c 3D анимацией напоминает компьютерную игру, в которой пользователь передвигается между трехмерными объектами, изменяет их форму, поворачивает, приближает и т. д.

Рисунок 29 - Четырех окнах проекций

Виртуальное пространство, в котором работает пользователь, называется трехмерной сценой. То, что вы видите в окнах проекций – это отображение рабочей сцены. Работа с трехмерной графикой очень похожа на съемку фильма, при этом разработчик выступает в роли режиссера. Ему приходится расставлять декорации сцены (то есть создавать трехмерные модели и выбирать положение для них), устанавливать освещение, управлять движением трехмерных тел, выбирать точку, с которой будет производиться съемка фильма.

Любые трехмерные объекты в программе создаются на основе имеющихся простейших примитивов – куба, сферы, тора и др. Создание трехмерных объектов называется моделированием. Для отображения простых и сложных объектов используют так называемую полигональную сетку, которая состоит из мельчайших элементов – полигонов. Чем сложнее геометрическая форма объекта, тем больше в нем полигонов и тем больше времени требуется компьютеру для просчета изображения. Если присмотреться к полигональной сетке, то в местах соприкосновения полигонов можно заметить острые ребра. Поэтому чем больше полигонов содержится в оболочке объекта, тем более сглаженной выглядит геометрия тела. Сетку любого объекта можно редактировать, перемещая, удаляя и добавляя ее грани, ребра и вершины. Такой способ создания трехмерных объектов называется моделированием на уровне подобъектов.

В реальной жизни все предметы, окружающие нас, имеют характерный рисунок поверхности и фактуру – шершавость, прозрачность, зеркальность и др. В окнах проекций видны лишь оболочки объектов без учета всех этих свойств. Поэтому изображение в окне проекции далеко от реалистичного. Для каждого объекта в программе можно создать свой материал – набор параметров, которые характеризуют некоторые физические свойства объекта.

Чтобы получить просчитанное изображение, трехмерную сцену необходимо визуализировать. При этом будут учтены освещенность и физические свойства объектов.

Созданная в окне проекции трехмерная сцена визуализируется либо непосредственно из окна проекции, либо через объектив виртуальной камеры. Виртуальная камера представляет собой вспомогательный объект, обозначающий в сцене точку, из которой можно произвести визуализацию проекта. Визуализируя изображение через объектив виртуальной камеры, можно изменять положение точки съемки. Подобного эффекта невозможно добиться, визуализируя сцену из окна проекции. Кроме этого, виртуальная камера позволяет использовать в сценах специфические эффекты, похожие на те, которые можно получить с помощью настоящей камеры (например, эффект глубины резкости).

Качество полученного в результате визуализации изображения во многом зависит от освещения сцены. Когда происходят съемки настоящего фильма, стараются подобрать наиболее удачное положение осветительных приборов таким образом, чтобы главный объект был равномерно освещен со всех сторон, и при этом освещение съемочной площадки выглядело естественно.

Программы 3D-анимации позволяют устанавливать освещение трехмерной сцены, используя виртуальные источники света – направленные и всенаправленные. Источники света являются такими же вспомогательными объектами, как виртуальные камеры.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее