10307 (Педосфера и ее значение), страница 6

2016-07-30СтудИзба

Описание файла

Документ из архива "Педосфера и ее значение", который расположен в категории "". Всё это находится в предмете "биология" из 2 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "биология" в общих файлах.

Онлайн просмотр документа "10307"

Текст 6 страницы из документа "10307"

Проведенные эксперименты показали, что при разрушении обломочных минералов рассеянные и главные химические элементы, образующие данный минерал, мобилизуются неодинаково. Часть рассеянных элементов мобилизуется очень легко, значительно раньше, чем начинает разрушаться кристаллическая структура минерала, и в раствор переходит большое количество главных элементов. Вероятно, при гипергенном разрушении или трансформации обломочных минералов вначале мобилизуются внеструктурные формы рассеянных элементов, приуроченные к дефектам кристаллов. В дальнейшем мобилизуются другие формы, в том числе изоморфные примеси, входящие в кристаллохимические структуры минералов.

Таким образом, обломочные минералы, являясь наиболее инертными компонентами минерального вещества почв, содержат небольшой резерв сравнительно легко мобилизуемых рассеянных элементов. Концентрация рассеянных элементов в обломочных минералах (в частности, в кварце), выделенных из почв или рыхлых покровных отложений, как правило, более низкая, чем в этих же минералах, находящихся в горных породах, не затронутых выветриванием. Это объясняется тем, что обломки минералов в процессе выветривания и многократного переотложения претерпели сильное дробление и относительно непрочно фиксированные элементы были частично выщелочены растворами кислых метаболитов организмов и гумусовых кислот.

2. Высокодисперсная часть минерального вещества почвы в основном состоит из гипергенных силикатов: каолинита, метагал-луазита, гидрослюд, монтмориллонита и др. В меньшем количестве присутствуют минералы группы оксидов и гидроксидов железа, алюминия, а также рентгеноаморфные вещества.

Диспергирование минерального вещества – одно из главных проявлений его гипергенного изменения на поверхности суши. Под влиянием суточных и сезонных колебаний температуры образуются трещины, приуроченные в минералах к дефектам кристаллов, а в горных породах – к контакту зерен. Расклинивающее действие пленок воды в тонких трещинах и давление льда в более крупных способствуют механическому дроблению пород. Одновременно происходит трансформация галогенных силикатов в гипергенные, частицы которых имеют размеры 1–2 мкм и менее.

В результате прогрессирующего измельчения минерального вещества сильно увеличивается его суммарная поверхность в единице объема и соответственно роль процессов сорбции–десорбции. Возрастанию роли сорбционных процессов способствуют особенности кристаллического строения гипергенных силикатов. Структуры гипогенных силикатов основаны на электростатических (ионных, ионно-ковалентных) связях между элементами. В глинистых минералах электростатические связи имеются только в пределах плоского пакета, а связь между пакетами осуществляется силами типа межмолекулярных. Поэтому химические элементы не только адсорбируются поверхностью высокодисперсных частиц, но также могут входить в межпакетное пространство. Различные типы сорбционных процессов (от катионообменной адсорбции, являющейся важным звеном в биологическом круговороте химических элементов на суше, до хемосорбции) имеют важное значение для регулирования миграции элементов в педосфере. В высокодисперсной части минерального вещества педосферы аккумулировано большое количество тяжелых металлов и других рассеянных элементов.

В силу особенностей строения разные глинистые минералы связывают неодинаковое количество химических элементов. Минералы со структурой, где расстояние между пакетами стабильно, имеют ограниченную сорбционную способность. Например, катинообменная емкость каолинита обычно не более 10 мг-экв/100 г. минерала. Сильно набухающие минералы, у которых межпакетное расстояние может значительно увеличиваться, сорбируют большое количество элементов. Катионообменная емкость монтмориллонита в 10 раз больше, чем каолинита. Емкость поглощения катионов гидрослюд и смешаннослойных минералов составляет несколько десятков мг-экв/100 г. твердого вещества.

Концентрация рассеянных элементов отчетливо меняется по главным компонентам минерального вещества почв. Наиболее низкие значения свойственны обломочному кварцу. По этой причине в рыхлых отложениях песчаного состава содержание рассеянных элементов, как правило, ниже, чем в суглинистых. Это различие тем заметнее, чем меньше сохранилось неустойчивых минералов и чем больше кварца в обломочной части минерального вещества почвы. Более высокие концентрации характерны для фракции высокодисперсных частиц размером менее 1 мкм. Наиболее высокие концентрации отмечены во фракции минералов с большой массой в единице объема, в так называемой тяжелой фракции.

3. Специфическим проявлением перераспределения минеральных компонентов в условиях прерывистого («пульсирующего») почвообразования на протяжении верхнего кайнозоя являются почвенные минеральные новообразования – скопления минералов, возникших при почвообразовании и четко отделяющиеся от вещества почвы. Их морфология разнообразна: округлые сплошные и полые конкреции; трубчатые конкреции; рыхлые скопления, налеты и пленки; плотные корочки, натеки и бороздки на каменистых обломках; зернистые агрегаты и друзы; линзовидные тела и пластообразные панцири. Столь же разнообразен их минералогический состав, в котором имеются представители почти всех классов минералов, но наиболее распространены карбонаты кальция и гидроксиды железа.

По степени окристаллизованности минеральные новообразования современных и плиоплейстоценовых почв могут быть разделены на две группы. Первую составляют новообразования, обладающие хорошей кристалличностью и состоящие из относительно легкорастворимых минералов, преимущественно класса сульфатов. Очевидно, что образование этих минералов происходило путем нормальной кристаллизации из водных растворов. Вторая группа отличается весьма мелкой структурой. Таковы гидроксиды железа и марганца, размеры кристаллических индивидов которых, как правило, не превышают нескольких микрометров, а часто находятся за пределами разрешающей способности оптического микроскопа. Их кристаллическая структура устанавливается лишь при рентгеноструктурном и термохимическом анализе. Структура карбонатных новообразований также весьма мелкокристаллическая, размеры наиболее мелких индивидов составляют несколько микрометров, наиболее крупных – от 0,03 до 0,05 мм.

Новообразования, обладающие очень мелкой или скрытокристаллической структурой, обычно имеют различные варианты метаколлоидной микротекстуры, что свидетельствует о гелевидном состоянии вещества в момент его образования. Следы гелевидного состояния характерны не только для железо- и марганцевооксидных новообразований, но и для карбонатно-кальциевых. Гели гидроксидов железа микробиологического происхождения хорошо известны, образование гелей карбонатов кальция не изучено. По-видимому, гели СаСО3 возникают при резком биогенном изменении парциального давления СО2 в почвенных растворах, обогащенных бикарбонатом кальция, что нарушает равновесие системы НСО3 + Н+ + СО32- в растворах и сопровождается быстрым, «взрывным» выпадением карбоната кальция. С течением времени происходит уменьшение объема мелкокристаллических гелей, что сопровождается образованием трещин и пустот внутри известковых конкреций.

Почвенно-гипергенные минералы, образующиеся в результате нормальной кристаллизации из водных растворов, инертны по отношению к минеральной части почв. Обычно эти минералы кристаллизуются в форме мелких кристаллов в пустотах и трещинах, а при образовании крупных кристаллов в песчаных почвах заполняют пространство между песчаными частицами, цементируя их в процессе роста отдельных крупных кристаллов (так называемые «репетекские гипсы» или «гипс типа Фотенбло»).

Новообразования с метаколлоидной микротекстурой (железо-оксидные и карбонатнокальциевые) не только цементируют минеральные частицы, но и определенным образом реагируют с ними. Под микроскопом видно, что эти новообразования координируют и даже частично метасоматически замещают минералы почвообразующих пород. Наиболее легко поддаются замещению высокодисперсные компоненты почв и рыхлых почвообразующих пород, наиболее устойчивым является обломочный кварц.

В новообразованиях, сформированных при участии метасоматических процессов и содержащих значительную механическую примесь минеральных компонентов почвы, присутствует весь спектр рассеянных элементов, имеющихся в местных почвах и почвообразующих породах. При этом концентрация большей части рассеянных элементов в новообразованиях тем ниже, чем меньше механической примеси почвенных минеральных частиц. В то же время отдельные рассеянные элементы селективно аккумулируются в новообразованиях, причем их концентрация тем выше, чем меньше механических примесей минеральных частиц почвы.

В почвах хвойных и смешанных лесов вместе с гидроксидами железа избирательно накапливаются некоторые тяжелые металлы (марганец, свинец, ванадий, хром, медь), а в почвах засушливых ландшафтов в карбонатных и сульфатных новообразованиях аккумулируется стронций. Его концентрация при формировании гипсовых новообразований в почвах пустынь настолько увеличивается, что среди кристаллов гипса иногда (в частности, в почвах пустыни Устюрт) встречаются мелкие кристаллы сульфата стронция – минерала целестина.

Весьма чувствительным геохимическим показателем степени аридности геобиосистем является отношение концентрации Sr/Ba в почвенных новообразованиях (табл. 7). Численные значения этого отношения закономерно возрастают от почв северных степей (черноземов) к серо-бурым почвам пустынь.

Таблица 7. Отношение концентрации стронция к концентрации бария в почвенных новообразованиях

Природная зона и регион

Карбонатные новообразования

Гипсовые новообразования

Северные степи Восточно-Европейской равнины

3

Засушливые степи Северного Предкавказья

3

5

Пустыни Южного Казахстана и Средней Азии

7

25–50

В заключение следует отметить палеогеографическое значение почвенных новообразований. Они имеют относительно крупные размеры, хорошо сохраняются, их легко обнаружить в погребенных и сильно эродированных почвах и даже в переотложенных продуктах плиоплейстоценового почвообразования.

В нижней части почв иногда встречаются новообразования, не соответствующие биогеохимическим условиям современных почв. Так, в некоторых районах Средней Азии в серо-бурых почвах пустынь присутствуют крупные известковые конкреции и остатки мощного горизонта гипса оригинальной шестовато-игольчатой структуры. Эти образования являются реликтами древних гидроморфных почв, сохранившимися в нижней части почв современной пустыни.

Изучение парагенетических ассоциаций реликтовых новообразований почв верхнекайнозойского возраста, их морфологии, микростроения и особенностей химического и микроэлементного состава дает возможность обнаружить объективные данные для восстановления палеогеографических условий геологического прошлого.

5. Проблема возникновения почв и эволюция почвообразования в истории Земли

Роль процессов выветривания в развитии химического состава земной коры континентов. Появление почв было предопределено образованием первых наземных фитоценозов, положивших начало биогенной циклической миграции химических элементов на суше. Согласно геологическим данным, это произошло около 350–400 млн. лет назад. Это не означает, что на протяжении предшествовавших трех миллиардов лет на поверхности древних континентов не происходило гипергенного преобразования (выветривания) горных пород. Этот процесс начался с момента выхода праматериков из-под уровня океана 2,5–3 млрд. лет назад, но характер гипергенных процессов того времени во многом неясен, так как состав пород, слагавших праконтиненты, так же как состав атмосферы и гидросферы, существенно отличались от современного. Учитывая состав газов, поступавших из мантии, и связанную с этим кислотность древней гидросферы, можно предполагать, что основную роль играли процессы гидролитического разложения силикатных пород. Начиная со второй половины протерозоя выветривание постепенно приобретает черты, сближающие его с постдокембрийским. Среди процессов гипергенного преобразования минерального вещества земной коры основная роль переходит к трансформации кристаллохимических структур силикатов – наиболее распространенной группы породообразующих минералов, составляющих более 75% нормативного состава земной коры. Процессы гидролитического разрушения этих минералов на поверхности континентов получили подчиненное значение.

Как известно, земная кора континентов образована тремя комплексами пород, различающимися плотностью, химическим и минералогическим составом. Верхний (наружный) комплекс состоит из осадочных пород, среди которых преобладают силикатно-кварцевые (песчано-глинистые), составляющие около 70% массы рассматриваемого комплекса, и карбонатные, которых немногим более 20%. Осадочная толща распределена на континентах очень неравномерно, 3/4 ее массы сосредоточены в геосинклиналях и подвижных поясах.

Второй комплекс, образующий так называемый гранитный слой, сложен разнообразными кристаллическими породами, в нормативном составе которых около 75% силикатов и 15% кварца, а среднее содержание SiO2 близко к 65%. Предполагается, что породы этого комплекса образовались из осадочных отложений, поступивших в геосинклинали и подвижные пояса и затем метаморфизованных, гранитизированных и сконсолидированных в мощные кристаллические массивы, которые постепенно наращивали материки и выводили глубинные породы (сланцы, граниты, гнейсы) на поверхность, где они подвергались гипергенному воздействию.

Третий комплекс, образующий нижний, так называемый базальтовый слой, слагает основание земной коры континентов, на поверхность не выходит и пока недоступен для непосредственного изучения. Предполагается, что он сложен бескварцевыми метаморфическими породами, состоящими из железомагнезиальных силикатов (гранулитов, эклогитов), и содержит в среднем около 50% SiO2. Можно предполагать, что более высокое содержание SiO2 в гранитном слое по сравнению с базальтовым связано с периодической ассимиляцией гранитным слоем силикатного вещества осадочных отложений, которое обогащено оксидами кремния. Одной из главных причин указанного обогащения является гипергенная трансформация силикатного вещества на поверхности континентов.

Сущность гипергенной трансформации силикатов, образующих кристаллические породы (граниты, гнейсы и др.), заключается в частичном нарушении ионных связей, на которых основаны кристаллохимические структуры гипогенных (глубинных) силикатов, и создании структур, где отдельные элементы, сохраняющие внутри себя ионный тип связи, соединяются между собой более слабыми связями типа ван-дер-ваальсовой или водородной. Гипогенные силикаты имеют трехмерные структуры разного типа, в которых ионы соединены ионным типом связи. В структурах гипергенных силикатов ионы Si4+, A13+, Mg2+, O2- и (ОН)- с помощью ионного типа связи комбинируются в плоские двух- или трехслойные пакеты, соединенные между собой слабыми связями. При перестройке структур гипогенных силикатов в гипергенные часть химических элементов, в первую очередь, кальций, натрий и магний, освобождается, вовлекается в водную миграцию и удаляется, благодаря чему в продуктах выветривания повышается относительное содержание кремния. Кварц, занимающий второе (после силикатов) место в составе кристаллических пород гранитного слоя, слабо затрагивается гипергенными процессами, что также способствует остаточному накоплению SiO2.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
427
Средний доход
с одного платного файла
Обучение Подробнее