144951 (Системы теплогазоснабжения и вентиляции), страница 7

2016-07-30СтудИзба

Описание файла

Документ из архива "Системы теплогазоснабжения и вентиляции", который расположен в категории "". Всё это находится в предмете "строительство" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. .

Онлайн просмотр документа "144951"

Текст 7 страницы из документа "144951"

В целом годовой экономический эффект от изоляции стояков систем горячего водоснабжения очень велик. Эффективность применения изоляции стояков настолько велика, что целесообразно выполнить изоляцию стояков действующих систем. Для производства изоляционных работ не требуются исполнители высокой квалификации; это вполне может быть осуществлено в короткие сроки силами службы эксплуатации.

Использование вторичных энергоресурсов для нагрева теплоносителей в системах отопления, вентиляции и кондиционирования воздуха.

Использование вторичных энергоресурсов (ВЭР) для теплоснабжения промышленных зданий приобретает все большие масштабы. Экономически это вполне оправдано – затраты на экономию 1 т у.т. за счет использования ВЭР в 3-4 раза меньше затрат на его добычу и транспортировку. Уже сейчас степень использования так называемых горючих ВЭР (конверторный газ, хвостовые газы, образующиеся при выработке многих продуктов, горючие газы легкой промышленности и др.), по данным ВНИПИэнергопрома, превышает 90%, в результате чего экономится более 70 млн. т у.т. в год.

Во всех случаях экономическая задача заключается в том, что бы в первую очередь использовать те источники ВЭР, при которых эффект будет наибольшим. С этой целью предварительно должна быть проведена паспортизация всех источников ВЭР с указанием их количеств, температур, степени загрязнения, продолжительности и режима поступления. К числу этих источников относятся различные технологические ресурсы (отходящие газы, пар и нагретая вода, являющиеся результатом работы технологического оборудования, котельных, компрессорных и др.), а также вентиляционные выбросы. Одновременно определяют возможных потребителей ВЭР – технологические процессы, отопление, горячее водоснабжение, вентиляция и др. Следующим этапом является составление баланса количества ВР и потребности в них с подразделением последней на группы по температурам ВЭР (высокопотенциальная и низкопотенциальная теплота).

Если количество ВЭР больше потребности в них, то в первую очередь используют те источники, утилизация теплоты которых дает наибольший экономический эффект. Таким образом производят ранжирование всех источников ВЭР, а затем составляют баланс потребности в теплоте и количестве ее, получаемой при использовании этих источников.

Сокращение энергопотребления.

Для общественных зданий характерен периодический режим работы, связанный с временным пребыванием в них людей. Суточная периодичность режима работы помещений приводит к нестационарности протекающих в них тепловых потоков. Анализ динамики тепловых процессов позволяет вскрыть резервы сокращения энергопотребления на обеспечение внутренних тепловых ресурсов.

Сокращение энергопотребления системами отопления, вентиляции и кондиционирования воздуха особенно важно в холодное время года. Для этих целей необходимо:

1). использование прерывистого отопления, совмещенного с приточной вентиляцией;

2). снижение температуры внутреннего воздуха в нерабочее время в помещениях, оборудованных водяными системами отопления, за счет уменьшения теплоотдачи этих систем;

3) использование переменного расхода воздуха в прямоточных системах вентиляции и кондиционирования воздуха в рабочее время;

4). использование прерывистой вентиляции помещений.

Возможности сокращения энергопотребления с помощью перечисленных мер, относящихся к области режима регулирования систем.

Концепция энергосбережения при реставрации и капитальном ремонте зданий на примере жилого дома

Требования обновленных СНиП 11-3-79* (95) Строительная теплотехника, а также МГСН 2.01-99, «…исходя из условий энергосбережения», сводятся в основном к утеплению оболочки зданий и не имеют технико-экономических обоснований. Это привело к нерациональному расходованию материальных ресурсов и малорентабельным капиталовложениям при строительстве новых и утеплении реконструируемых зданий.

Фонд эксплуатируемых зданий в России составляет около 2,6 млрд м2 общей площади. Все они были построены по ранее действовавшим нормативам при минимально допустимом уровне теплозащиты наружных стен (не менее требуемого сопротивления теплопередаче, определяемого по формуле 1), но вполне достаточным для обеспечения выполнения санитарно-гигиенических требований по предупреждению выпадения конденсата и условиям комфортности микроклимата помещений. Окна в жилых зданиях были в деревянных переплетах преимущественно с двухслойным остеклением. На отопление существующих зданий ежегодно должно расходоваться по нормативам не менее 200 тонн условного топлива. Ввод новых зданий в современных условиях не превышает 30 млн м2 в год, при дополнительной потребности в топливе не более 3 млн т. Отсюда следует, что основной резерв энергосбережения скрыт в существующем фонде зданий. Однако почти все инвестиции направляются на новое строительство, и указанный главный резерв энергосбережения остается нетронутым. Без его вовлечения в оборот все разговоры о решении проблемы энергосбережения в градостроительном комплексе оказываются беспочвенными. Не подготовлена научно обоснованная концепция и нормативная база для решения этой крупномасштабной государственной проблемы, о чем свидетельствуют первые робкие попытки разработки эталонных проектов капитального ремонта жилых зданий в целях снижения их энергопотребления при эксплуатации. Неверно принятая концепция энергосбережения может привести при ее реализации к значительным неоправданным расходам материальных ресурсов и малорентабельным капиталовложениям. Покажем на конкретном примере, какие нюансы возникли при разработке проекта капитального ремонта жилого дома по ныне действующим нормативам.

Жилой 9-ти этажный, четырех секционный дом имеет стены из однослойных керамзитобетонных панелей толщиной 400 мм, чердачное перекрытие из пустотных железобетонных плит – 220 мм с утеплителем из минераловатных плит – 50 мм, уложенных на цементно-фибролитовые плиты – 75 мм. Перекрытие над техническим подпольем выполнено из ребристых железобетонных плит толщиной 60 мм, слоя песка – 40 мм, цементной стяжки – 40 мм, ДВП – 10 мм, пол из линолеума – 5 мм, окна с двойным остеклением в раздельно-спаренных деревянных переплетах.

СНиП 11-3-79* требуют для реставрируемых и капитально ремонтируемых зданий независимо от этажности устанавливать повышенный уровень теплозащиты ограждающих конструкций.

Руководствуясь этими требованиями, Мосжилниипроект при разработке проекта капитального ремонта этого здания [4] установил следующие значения сопротивления теплопередаче, м2.К/Вт, ограждающих конструкций:

  • наружных стен – 3,16

  • чердачных перекрытий – 4,1

  • окон и балконных дверей – 0,54

  • перекрытий над холодными техподпольями – 4,71.

Детальный анализ представленного проекта выполнен международной организацией в рамках проекта программы ТАСИС ERUS-9705 [4] с дополнениями собственными предложениями. В результате к сопоставлению были приняты пять вариантов, включая базисный, для которых определены следующие значения эксплуатационной характеристики здания (табл. 1).

ТАСИС рекомендовал принять к реализации проектный вариант № 3, позволяющий снизить теплопотери на 48 %, но дополнить его следующими мероприятиями по варианту № 4 и снизить энергопотребления здания в целом на 56%:

  • увеличить толщину слоя утеплителя наружных стен с 12 до 16 см;

  • утеплить перекрытие подвала дополнительным 8-сантиметровым слоем теплоизоляции;

  • заменить теплоизоляцию трубопроводов в подвале и увеличить ее толщину до диаметра трубы;

  • заглушить 2/3 вентиляционных окон в стенах подвала.

Отметим, что расчеты и предложения ТАСИС отличаются детальным рассмотрением различных вариантов теплозащиты наружных стен, перекрытий, окон при определении удельных энергозатрат здания в зависимости от кратности воздухообмена (n = 0.3, 0.67-1.0; 1/ч) и сопоставлении результатов расчета при использовании европейских (DIN) и русских (СНиП) нормативов. Предложенный набор энергосберегающих технический решений при отсутствии общей концепции энергосбережения оказался исчерпывающе полон и не нуждается в дополнениях. Однако ряд методических положений, влияющих на достоверность полученных результатов расчета удельных энергозатрат и корректность выбора окончательного варианта реставрации здания, должны быть уточнены при учете следующих специфических особенностей градостроительного комплекса России:

1. Приводимые в табл. 1 значения удельных энерго затрат для базисного варианта № 1 при принятой в расчетах кратности воздухообмена n = 0,67 1/ч, исходя из осредненного норматива 35 м3/чел., не соответствует истинному притоку инфильтрующегося воздуха в российских зданиях старой постройки. Об этом свидетельствуют (см. с. 17 [4]) и откровенные признания самих разработчиков в части правильности «допущений кратности воздухообмена до реконструкции и после нее. Связанная с этим неопределенность не допускает никаких точных прогнозов относительно реально ожидаемой экономии энергии».

2. По результатам натурных измерений многих исследователей в ранее построенных в России по типовым проектам жилых зданиях при приточно-вытяжной естественной вентиляции, фактическая кратность воздухообмена в квартирах может достигать более двух объемов в час (n = 2,1/ч), из-за большого притока инфильтрующегося воздуха через окна, притворы дверей и вертикальные стыки наружных стен при естественном ветровом и температурном напорах. Поэтому фактические удельные энергозатраты оказались значительно больше значений, принятых в базисном варианте № 1, что должно снизить долю ожидаемой экономии тепловой энергии и эффект от утепления ограждающих конструкций.

3. Отсутствует анализ структуры энергобаланса существующего здания до и после его реконструкции, что не позволяет определить вклад каждого из предложенных технических решений в снижении энергопотребления здания и обосновать правильность генерального направления решения проблемы энергосбережения при реставрации зданий.

4. Исполнители принимают на веру правильность, заметим, не имеющих технико-экономических обоснований, требований СНиП по увеличению до уровня этапа 2 теплозащиты ограждающих конструкций при реставрации зданий. По этой причине предложенные варианты снижения энергопотребления здания оказались безальтернативными, что заранее и предопределило выбор в пользу проектного варианта № 2 с дополнениями по варианту №3. Это привело к механическому выполнению требований СНиП по повышению уровня теплозащиты ограждающих конструкций, не считаясь с затратами и рентабельностью капиталовложений, несмотря на то, что по принятому варианту стоимость утепления 1 м2 наружной стены должна составить не менее 50 $ США. Наш расчет показал, что в климатических условиях г. Москвы при повышении сопротивления теплопередаче наружных стен с существующих 1,8 до 3,16 м2.Втстоимость сбереженной тепловой энергии при ее цене 0,03 $/кВт.ч должна составить 2,19 $ /(м2.год), а срок окупаемости около 23 лет, что указывает на экономическую нецелесообразность капиталовложений на утепление наружных стен здания (показатель рентабельности менее 5%).

5. Заслуживает большего внимания нереализованное предложение по варианту № 5 в части применения энергоэффективных окон с повышенным до 0,71 м2.К/Вт сопротивлением теплопередаче. Однако следует указать, что главное преимущество новых конструкций энергоэффективных окон обусловлено не столько их повышенным уровнем теплозащиты, а в большей мере (примерно на порядок выше) – снижением воздухопроницаемости, что необходимо учитывать в технико-экономических расчетах по методике. По нашим расчетам срок окупаемости таких окон в климатических условиях г. Москвы не должен превышать 5 лет. Поэтому целесообразно дополнительно рассмотреть альтернативный вариант с использованием энергоэффективных окон, но без утепления наружных стен.

6. Уместно напомнить, что с увеличением толщины дополнительного слоя утеплителя стен, эффективность энергосбережения быстро снижается, поскольку указанная зависимость не линейна. При этом дополнительные расходы на каждый сантиметр толщины дополнительного слоя утеплителя остаются постоянными. Но снижается значение коэффициента теплотехнической однородности, что приводит в целом к снижению эффективности от утепления ограждающих конструкций.

С учетом изложенных замечаний произведем пересчет показателей альтернативных вариантов теплозащиты здания, характеристики которых приведены в табл. 2. Принципиальные различия альтернативных вариантов состоят в следующем:

В варианте № 2 по сравнению с вариантом № 1 предусмотрено: утепление перекрытия подвала δут = 8 см при λ = 0,05 Вт/(м.К); применение энергоэффективных окон и балконных дверей с однокамерными стеклопакетами и дополнительным третьим одинарным стеклом с селективным теплоотражающим покрытием, а также расшивка и герметизация вертикальных стыков между панелями, за счет чего должна быть снижена до минимума (n = 0,67 1/ч) кратность воздухообмена.

В варианте № 3 приняты решения проектной организации, обеспечивающие выполнение требований СНиП 11-3-79 по утеплению ограждающих конструкций до уровня этапа 2 (табл. 1, б) предусмотрено применение менее дорогих, чем в варианте № 2, окон и балконных дверей, но позволяющих снизить кратность воздухообмена до n = 1,0 1/ч.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5302
Авторов
на СтудИзбе
416
Средний доход
с одного платного файла
Обучение Подробнее