85761 (Математическое моделирование и расчет систем управления техническими объектами)

2016-07-30СтудИзба

Описание файла

Документ из архива "Математическое моделирование и расчет систем управления техническими объектами", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85761"

Текст из документа "85761"

Министерство образования Российской Федерации

Санкт-Петербургский государственный горный институт им. Г.В.Плеханова

(технический университет)

Математическое моделирование и расчет систем управления техническими объектами

Учебное пособие

САНКТ-ПЕТЕРБУРГ

2002

УДК 681.51(075.8)

ББК 30в6

Б82

Авторы:

Б.М. Борисов, В.Е. Большаков, В.И. Маларёв, Р.М. Проскуряков

Изложены основные характеристики систем управления техническими объектами и принципы построения математических моделей таких систем. Рассмотрены разновидности и методы динамического моделирования технологических объектов с позиций исследования их в системах управления. Отмечены особенности построения моделей на базе линейных и нелинейных элементов систем управления.

Пособие предназначено для студентов всех форм обучения специальности 180400 «Электропривод и автоматика промышленных установок и технологических комплексов» и может быть использовано студентами других специальностей для курсового и дипломного проектирования

Рецензент к.т.н. А.А.Сарвин (Северо-Западный государственный заочный технический ун-т).

Математическое моделирование и расчет систем управления техническими объектами:

Б82 Учебное пособие / Б.М.Борисов, В.Е.Большаков, В.И.Маларёв, Р.М.Проскуряков; Санкт-Петербургский государственный горный институт (технический университет). СПб, 2002. 63 с.

ВВЕДЕНИЕ

Современное горное производство характеризуется достаточным арсеналом средств автоматизации и управления. Для их рационального использования необходимо определить и реализовать оптимальные параметры автоматических систем и регуляторов. Определение оптимальных параметров возможно на стадии проектирования путем изучения поведения моделей управляемых технологических установок, процессов.

В процессе изучения дисциплины «Математическое моделирование и расчет систем управления техническими объектами» анализируются функциональные схемы управления технологических процессов, определяются взаимосвязи между подсистемами, ограничения, критерии управления. Рассматриваются статические и динамические режимы работы машин, установок и их математическое описание. Изучаются особенности методов исследования математических моделей, имеющих нелинейные зависимости, трансцендентные уравнения.

1. Математические модели систем управления

1.1 Операторы преобразования переменных

Рассмотрение причинно-следственного взаимодействия системы управления со средой связано с обособлением собственно системы S и выделением ее связей со средой через переменные входа f и выхода у (рис.1).

Система оказывается звеном в искусственно разорванной цепи причинно-следственных отношений «среда – система – среда».

На содержательном уровне объекты и системы управления интерпретируются как устройства получения, передачи и обработки информации. С другой стороны, объекты и системы можно рассматривать как преобразователи сигналов – носителей этой информации. Преобразование сводится к изменению параметров, кодирующих информацию. Свойства системы как преобразователя характеризуются ее оператором, отображающим множество функций времени на входе системы на множество функций выхода:

.

Оператор линеен, если обладает свойствами однородности и аддитивности, т. е.

В общем случае линейной комбинации входных воздействий отвечает та же линейная комбинация соответствующих реакций:

Свойство линейности оператора, выраженное приведенной формулой, иногда называют принципом суперпозиции. Принцип суперпозиции дает возможность выражать реакцию линейной системы на любое воздействие через ее реакцию на определенный вид элементарных воздействий fi(t).

При построении моделей стремятся к их простоте при максимальной адекватности оригиналам. В частности, принимают гипотезу о линейности оператора, что принципиально упрощает анализ и синтез.

Если принцип суперпозиции не выполняется, то оператор называется нелинейным. Разумеется, класс нелинейных операторов много богаче класса линейных.

Оператор стационарен, если его характеристики инвариантны ко времени. Другими словами, при сдвиге во времени входного воздействия без изменения его формы реакция претерпевает такой же сдвиг во времени без изменения своей формы. В ряде случаев модели должны отражать изменение свойств объекта во времени, тогда вводятся в рассмотрение нестационарные операторы

Нестационарность оператора учитывает воздействие среды принципиально иного характера, чем сигнальный вход f(t). В простейшем случае нестационарность сводится к изменению параметров модели, например коэффициентов дифференциального уравнения. В общем случае влияние среды приводит к необходимости изменения структуры оператора, например порядка дифференциального уравнения.

Если вариации оператора происходят много медленнее основных процессов, то вместо нестационарного оператора рассматривают множество стационарных операторов, различающихся значениями параметров. Описание объекта множеством равновероятных операторов содержит неопределенность. Если параметры модели заданы с точностью до интервалов значений, то о таких системах говорят, что они интервальные.

Оператор может быть детерминированным или стохастичным. В случае стохастичных операторов параметры представляются как случайные величины и задаются их вероятностные характеристики.

Объекты управления могут быть с сосредоточенными или распределенными параметрами. В последнем случае они описываются уравнениями в частных производных (разностях).

1.2 Классы моделей

Модель объекта или системы управления принадлежит тому же классу, что и описывающий их оператор преобразования. Выделяют следующие признаки классов систем с непрерывным и дискретным временем:

• линейные Л или нелинейные Л;

• стационарные С или нестационарные С;

• детерминированные Д или стохастичные Д;

• сосредоточенные (конечномерные) К или распределенные (бесконечномерные) К.

Эти четыре независимых признака биальтернативны, поэтому можно насчитать всего 24 = 16 классов непрерывных и столько же дискретных систем.

Простейший класс – ЛСДК – линейные стационарные детерминированные конечномерные системы. Они имеют форму обыкновенных линейных дифференциальных (разностных) уравнений с постоянными детерминированными коэффициентами. Математика разработала весьма развитый аппарат анализа этого класса систем.

Более сложные классы операторов получаются при введении одного из альтернативных признаков:

ЛСДК; ЛСДК; ЛСДК; ЛСДК.

Для таких систем существует незначительное число общих методов аналитического исследования, разработанных только для частных случаев. Операторы второго уровня сложности получаются введением двух отрицаний:

ЛСДК; ЛСДК; ЛСДК; ЛСДК; ЛСДК; ЛСДК.

При трех отрицаниях получаем операторы третьего уровня сложности:

ЛСДК; ЛСДК; ЛСДК; ЛСДК.

Операторы четвертого уровня сложности – ЛСДК – нелинейные нестационарные стохастичные бесконечномерные. Им соответствуют нелинейные дифференциальные уравнения в частных производных с переменными случайными параметрами.

Для систем, описываемых операторами второго и выше уровней сложности, имеется, как правило, только единственная возможность их анализа и синтеза путем вычислительных экспериментов.

Если модель системы образована элементами различных классов, то класс системы определяется классом элемента с максимальным числом отрицаний.

Система называется автономной, если на нее не действуют внешние силы, в том числе параметрического типа. Автономные системы, таким образом, стационарны. Изменение их состояния происходит в силу накопленной ранее энергии. На рис.2 модель среды представлена в виде автономной системы, имеющей выходы, но не имеющей входов. Движения автономной системы называют свободными.

Дифференциальные уравнения автономных систем включают переменные системы и их производные, но не содержат переменных, описывающих воздействия среды, и имеют постоянные параметры. Это так называемые однородные дифференциальные уравнения



,

дополняемые начальными условиями

Начальные условия являются следствием предыстории системы и вместе с дифференциальными уравнениями полностью определяют поведение автономной системы. В случае автономных систем с дискретным временем будем иметь однородные разностные уравнения:

.

Среда на входе системы моделируется автономными системами – генераторами воздействий или преобразователями типовых воздействий – фильтрами. Распространенными типовыми сигналами, моделирующими детерминированное воздействие, являются единичные импульсная и ступенчатая функции. Примером типового случайного воздействия является так называемый «белый шум». Среда может моделироваться динамической системой того же класса, что и сама система управления. Однако часто рассматриваются детерминированные системы со случайными воздействиями на входе.

1.3. Способы построения моделей

В зависимости от характера и объема априорной информации об объекте исследования выделяют два способа построения моделей систем управления в формах, принятых в теории управления: аналитический и экспериментальный.

Аналитический способ применяется для построения моделей объектов хорошо изученной природы. В этом случае имеется вся необходимая информация о свойствах объекта, но она представлена в другой форме. В результате идеализации физических объектов появляются структурные модели в виде схем с сосредоточенными компонентами (рис.2, а). Типичными представителями физических систем, допускающих такое представление, являются электрические и механические объекты. На рис.2, б изображена электрическая схема; рис.2, в представляет собой пример механической поступательной системы.

Подобные схемы являются моделями, в которых информация об интересующих свойствах объекта представлена в наглядной форме с использованием графических образов, отражающих физическую природу явлений, устройство и параметры объектов. На таких моделях базируются соответствующие дисциплины, например, теоретическая электротехника и теоретическая механика. Принципиальные схемы – стационарные линейные модели с сосредоточенными компонентами.

Методы теории управления абстрагируются от конкретной природы объектов и оперируют более общими – математическими (символьными) моделями.

Аналитический способ моделирования складывается из этапа построения схемы объекта и ее дальнейшего преобразования в математическое описание требуемой формы. При этом принципиальные проблемы моделирования решаются на первом – неформальном этапе. Второй этап оказывается процедурой преобразования форм представления моделей. Это дает возможность разработать различные компьютерные программы, позволяющие автоматизировать составление уравнений по схемам.

Рассмотрим примеры составления дифференциальных уравнений электрического и механического объектов. Ограничимся классом линейных стационарных моделей.

Существуют три типа пассивных электрических двухполюсников – сопротивление R, емкость С и индуктивность L, описываемые следующими уравнениями для токов i(t) и напряжений u(t):

;

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5166
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее