151861 (Исследование влияния линейных дефектов структуры на критическое поведение трехмерной модели Гейзенберга), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Исследование влияния линейных дефектов структуры на критическое поведение трехмерной модели Гейзенберга", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "физика" в общих файлах.

Онлайн просмотр документа "151861"

Текст 2 страницы из документа "151861"

Поэтому моделирование системы проводилось в два этапа. На первом этапе использовался кластерный алгоритм Вольфа, для определения критической температуры, а затем в ее вблизи исследовалась коротковременная динамика системы.

В работе использовался модифицированный для трехмерной системы кластерный алгоритм Вульфа [6].

  1. Выбирается случайный единичный вектор

  2. Случайным образом выбираются координаты центрального спина

  3. Выбранный спин зеркально отражается в плоскости перпендикулярной направлению :

  4. Рассматриваются все соседи данного спина. Спин считается сонаправленным, если он лежат по одну сторону от плоскости перпендикулярной направлению с вектором . Т.е. если

  1. Такой спин переворачивается (включается в кластер) с вероятностью

.

  1. Если спин перевернут, то аналогичным образом рассматриваются его соседи. Иначе переходим к следующему.

  2. На один шаг моделирования может приходиться несколько переворотов кластера.

Алгоритм Вольфа позволяет значительно уменьшить эффекты критического замедления времени релаксации системы.

Для нахождения критической температуры в данной работе рассматривались кумулянты Биндера четвертого порядка. Выражение для кумулянта можно представить в виде:

Где скобки означают статистическое усреднение, а скобки […] - усреднение по различным примесным конфигурациям. Кумулянт U (L,T) имеет важную для описания поведения конечных систем скейлинговую форму:

.

Кумулянт определен так, что 0 £ U £ 1. При этом для температур выше Tc U (L,T) ® 0 в пределе L ® ¥. Данная скейлинговая зависимость кумулянта позволяет определить критическую температуру Tc (L=¥) для бесконечной системы через координату точки пересечения кривых, задающих температурную зависимость U (L,T) для различных L. Более того, легко показать, что в критической области при T® Tc

и, следовательно, по максимальному наклону кумулянтов вблизи точки их пересечения при L®¥ можно определить значение критического индекса n, характеризующего температурную расходимость корреляционной длины при T ® Tc.

Применение кумулянтов позволяет хорошо тестировать тип фазового перехода в системе. Так, в случае фазовых переходов второго рода кривые температурной зависимости кумулянтов имеют ярко выраженную зависимость от L и некоторую область (треугольник) пересечения, близкую к точке. В случае фазового перехода первого рода кривые кумулянтов имеют специфический вид без взаимного пересечения, практически отсутствует их зависимость от размера моделируемой системы, а кумулянты в некоторой области температур принимают отрицательные значения.

1.3.3 Метод коротковременной динамики

Традиционно полагалось, что универсальное поведение существует только в равновесии. Однако недавние исследования в критической динамике для многих статических моделей показали, что универсальность также появляется в пределах микроскопического масштаба времени . Исследование метода коротковременной динамики не только показало существование универсального динамического поведения в пределах коротковременного периода, но также дало очень эффективный метод определения критических индексов [7]. Т.о. мы можем оценивать не только динамический критический показатель , но также и статические критические индексы и . Что более важно, результаты находятся в хорошем соответствии с полученными результатами традиционными методами, выполненными в равновесии.

Аналогично измерениям критических индексов определение критических температур также трудно в равновесии из-за критического замедления. Методом коротковременной динамики критическая температура может быть также получена из поведения намагниченности в критической области.

Главным образом из-за большой длины корреляции в равновесном состоянии существует динамическая скейлинговая форма, имеющая силу не только в равновесии, но также в раннем периоде развития критической системы, если система изначально имеет температуру выше критической, а также маленькую намагниченность. Т.о. после микроскопического времени существует скейлинговая форма. В общем случае для момента намагниченности:

.

Здесь - произвольный фактор, - время, - новый независимый критический параметр.

В ранней стадии развития системы длина корреляции мала, и эффекты конечности размеров почти отсутствуют. Выбирая фактор так, чтобы главная зависимость от времени была отменена (т.е. ), в критической точке получим:

,

где - новый динамический индекс, который характеризует универсальность в коротковременной динамике и равен:

.

Отсюда видно, что в течении микроскопического времени , намагниченность подвергается начальному увеличению в критической точке и можно легко получить значения индекса , основываясь на этой степенной форме.

Аналогично, полагая , в критической точке получим поведение второго момента намагниченности:

.

Для второго момента намагниченности можно ожидать, ввиду того, что длина корреляции мала в области ранней стадии развития системы :

.

Вблизи критической температуры в поведении намагниченности возникает дополнительный множитель - скейлинговая функция , т.е. появляются исправление к простому степенному закону, зависящие от . Поэтому при моделировании системы при температуре вблизи критической получается поведение с несовершенным степенным поведением, и критическая температура может быть получена путем интерполирования.

С другой стороны, можно также рассматривать динамические процессы, с начальным состоянием, в котором все спины направлены вверх. Моделирование методами Монте-Карло этих систем показало, что там также существует подобное скейлинговое выражение:

При критической температуре и при , получаем степенной закон для намагниченности:

Конечномерный скейлинговый анализ показывает, что поведение кумулянта Биндера определяется законом:

.

Т.о., появляется возможность измерять критические индексы и определять критическую точку. Критическое замедление почти отсутствует, так как длина корреляции еще маленькая (в течении времени, когда система еще не достигла равновесия). Метод коротковременной динамики может, кроме того, использоваться, как инструмент для отличия фазовых переходов первого рода от второго, сравнивая критическую температуру, полученную от различных стартовых состояний.


Глава 2. Результаты моделирования критического поведения трехмерной модели Гейзенберга с линейными дефектами

2.1 Алгоритм Вульфа. Определение критической температуры

В первой части данной работы использовался алгоритм моделирования Вольфа, с целью уменьшения влияния эффектов критического замедления времени релаксации системы на результаты моделирования. Алгоритм Вольфа характеризуется тем, что на решетке произвольно выбирается спин, строится "физический" кластер, которому этот спин принадлежит, а затем весь построенный кластер переворачивается.

В самом начале вычислений термодинамических характеристик для каждой примесной конфигурации все спины ориентировались в одном направлении (так называемый "холодный старт" - соответствует состоянию системы при Т = 0). Затем чтобы получить конфигурацию спинов, характерную для данной температуры, переворачивалось некоторое количество кластеров. Этот процесс называется термолизацией. В наших вычислениях термолизация составляла 200 шагов Монте-Карло. При этом Монте-Карло шагу соответствовало 5 переворотов кластера Вольфа.

После этого усреднением по N=2000 шагов Монте-Карло вычислялись кумулянты Биндера Результаты усреднялись по 15 - 20 различным реализациям пространственного распределения линейных дефектов образце (примесным конфигурациям). Концентрация спинов выбиралась равной 0.80.

На рис.1 показана температурная зависимость кумулянтов Биндера для различных L. Для разбавленной системы кумулянты пересеклись в области T = 1.20 - 1.21.

2.2 Метод коротковременной динамики. Уточнение критической температуры. Расчет критических индексов

Во второй части работы был реализован метод коротковременной динамики для уточнения критической температуры и вычисления критических показателей. В начальном состоянии все спины были ориентированы в одном направлении, затем использовался алгоритм Метрополиса для нахождения зависимости намагниченности, её логарифмической производной по температуре и кумулянта Биндера от времени. Все вышеуказанные величины усреднялись по примесным конфигурациям.

При моделировании рассматривалась динамика системы в интервале до 1000 шагов Монте-Карло на спин (МКС), около 80 различных конфигураций примесей, для каждой конфигурации проводилось усреднение по 10 прогонкам. Для модели с дальней пространственной корреляцией дефектов характерна сильные флуктуации результатов при малых размерах решетки (L~ 16 - 32). Поэтому в данной работе была предпринята попытка выполнить моделирование для кубической решетки с линейным размером L=64.

При моделировании получилось, что наилучшим образом удовлетворяет степенному закону поведение намагниченности системы при температуре T=1.245, хотя моделирование методом Вульфа показало, что значение критической температуры должно лежать в пределах 1.20 - 1.21. Несоответствие критических температур, определенных этими двумя методами может быть объяснено недостаточной статистикой результатов и малыми размерами систем, используемыми при методе кумулянтов Биндера.

В табл.1 представлены полученные в данной работе значения критических индексов и критические индексы, полученные в работе [1] теоретико-полевыми методами.

Таблица 1. Критические индексы для модели Гейзенберга с линейно коррелированными дефектами. Концентрация примесей 0.2

Индекс

Результат моделирования

Теоретическое значение [1]

z

2.46  0.12

2.26

β/ν

0.49  0.03

0.48

Найденные значения динамического и статических критических индексов, описывающие критическое поведение трехмерной Гейзенберговской-модели с линейными дефектами, в пределах погрешностей находятся в удовлетворительном согласии с результатами теоретической работы Error: Reference source not found. Следует отметить, недостаточное число примесных конфигурации, используемых в работе для усреднения и получения более достоверных значений термодинамических и корреляционных функций. Требуется провести дальнейшее уточнение результатов для данной модели. Тем не менее, результаты проведенных исследований подтверждают факт влияния дальней пространственной корреляции дефектов на критическое поведение трехмерной Гейзенберговской модели (имеющей трехкомпонентный параметр порядка).


Заключение

В данной работе методами компьютерного моделирования было осуществлено исследование влияния эффектов дальней пространственной корреляции немагнитных атомов примеси, распределенных в образцах в виде линейных дефектов структуры, на критическое поведение трехмерной модели Гейзенберга с трехкомпонентным параметром порядка.

Основными результатами работы являются следующие:

        1. Для трехмерной модели Гейзенберга были реализованы основные алгоритмы моделирования методом Монте-Карло - алгоритм Метрополиса и кластерный алгоритм Вольфа.

        2. В результате применения кластерного алгоритма Вольфа было проведено исследование температурного поведения кумулянтов Биндера 4-го порядка для решеток с размерами . Температуры точек пересечения кумулянтов Биндера для данных решеток позволили определить критическую температуру фазового перехода в ферромагнитное состояние для трехмерной модели Гейзенберга с линейными дефектами со спиновой концентрацией .

        3. С помощью метода коротковременной динамики были исследованы зависимости намагниченности, кумулянта Биндера 2-го порядка от времени для размера решетки была уточнена критическая температура системы (). Для трехмерной модели Гейзенберга с линейными дефектами со спиновой концентрацией из временных зависимостей указанных выше величин были получены значения динамического и статических критических индексов: , и , соответственно.

Найденные значения динамического и статических критических индексов, описывающие критическое поведение трехмерной модели Гейзенберга с линейными дефектами, в пределах погрешностей находятся в удовлетворительном согласии с результатами теоретической работы Error: Reference source not found. Можно сделать вывод, что факт влияния дальней пространственной корреляции дефектов на критическое поведение трехмерной модели Гейзенберга подтверждается.


Список литературы

  1. V. V. Prudnikov, P. V. Prudnikov, A. A. Fedorenko Field-theory approach to critical behavior of systems with long-range correlated defects.: Phys. Rev., 2000, v. B62 №13.

  2. Ландау Л.Д. Лифшиц Е.М. Статистическая физика. М.: Наука, 1976.

  3. Доценко В.С. УФН, 1995, т.165, № 5.

  4. Гулд Х., Тобочник Я.К. "Компьютерное моделирование в физике" В 2 ч.: Наука 1989

  5. Kun Chen, Alan M. Ferrenberg, and D. P. Landau. Static critical behavior of three dimensional classical Heisenberg models: A high-resolution Monte Carlo study. Phys. Rev., 1993, v. B 48, p.3249-3256.

  6. Grobe S. Pawing, Pinn K. Monte Carlo Algorithms For Fully Frustrated XY Model. arXiv: cond-mat/9807137.

  7. Zheng B. Monte Carlo simulations and numerical solutions of short-time critical dynamics. arXiv: cond-mat/9910504.

Размещено на Allbest.ru

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее