86009 (Высшая математика для менеджеров), страница 9

2016-07-29СтудИзба

Описание файла

Документ из архива "Высшая математика для менеджеров", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "86009"

Текст 9 страницы из документа "86009"

С помощью производной можно вычислить приращение функции, соответствующее приращению аргумента. Во многих задачах удобнее вычислять процент прироста (относительное приращение) зависимой переменной, соответствующий проценту прироста независимой переменной. Это приводит нас к понятию эластичности функции (иногда ее называют относительной производной). Итак, пусть дана функция y = f(x), для которой существует производная y = f (x). Эластичностью функции y = f(x) относительно переменной x называют предел

.

Его обозначают Ex (y) = x/y f (x) = .

Эластичность относительно x есть приближенный процентный прирост функции (повышение или понижение), соответствующий приращению независимой переменной на 1%. Экономисты измеряют степень чуткости, или чувствительности, потребителей к изменению цены продукции, используя концепцию ценовой эластичности. Для спроса на некоторые продукты характерна относительная чуткость потребителей к изменениям цен, небольшие изменения в цене приводят к значительным изменениям в количестве покупаемой продукции. Спрос на такие продукты принято называть относительно эластичным или просто эластичным. Что касается других продуктов, потребители относительно нечутки к изменению цен на них, то есть существенное изменение в цене ведет лишь к небольшому изменению в количестве покупок. В таких случаях спрос относительно неэластичен или просто неэластичен. Термин совершенно неэластичный спрос означает крайний случай, когда изменение цены не приводит ни к какому изменению количества спрашиваемой продукции. Примером может служить спрос больных острой формой диабета на инсулин или спрос наркоманов на героин. И наоборот, когда при самом малом снижении цены покупатели увеличивают покупки до предела своих возможностей - тогда мы говорим, что спрос является совершенно эластичным.

7.3 Экстремум функции

Функция y=f(x) называется возрастающей (убывающей) в некотором интервале, если при x1< x2 выполняется неравенство f(x1) < f (x2) (f(x1) > f(x2)).

Если дифференцируемая функция y = f(x) на отрезке [a, b] возрастает (убывает), то ее производная на этом отрезке f (x) 0 (f (x) 0).

Точка xо называется точкой локального максимума (минимума) функции f(x), если существует окрестность точки xо, для всех точек которой верно неравенство f(x) f(xо) (f(x) f(xо)).

Точки максимума и минимума называются точками экстремума, а значения функции в этих точках - ее экстремумами.

Необходимые условия экстремума. Если точка xо является точкой экстремума функции f(x), то либо f (xо) = 0, либо f (xо) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек.

Первое достаточное условие. Пусть xо - критическая точка. Если f (x) при переходе через точку xо меняет знак плюс на минус, то в точке xо функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке xо экстремума нет.

Второе достаточное условие. Пусть функция f(x) имеет производную f (x) в окрестности точки xо и вторую производную в самой точке xо. Если f (xо) = 0, >0 ( <0), то точка xо является точкой локального минимума (максимума) функции f(x). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные.

На отрезке [a,b] функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка [a,b].

Пример 3.22. Найти экстремумы функции f(x) = 2x3 - 15x2+ 36x - 14.

Решение. Так как f (x) = 6x2 - 30x +36 = 6(x -2)(x - 3), то критические точки функции x1 = 2 и x2 = 3. Экстремумы могут быть только в этих точках. Так как при переходе через точку x1 = 2 производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через точку x2 = 3 производная меняет знак минус на плюс, поэтому в точке x2 = 3 у функции минимум. Вычислив значения функции в точках x1 = 2 и x2 = 3, найдем экстремумы функции: максимум f(2) = 14 и минимум f(3) = 13.

Пример 3.23. Нужно построить прямоугольную площадку возле каменной стены так, чтобы с трех сторон она была отгорожена проволочной сеткой, а четвертой стороной примыкала к стене. Для этого имеется a погонных метров сетки. При каком соотношении сторон площадка будет иметь наибольшую площадь?

Решение. Обозначим стороны площадки через x и y. Площадь площадки равна S = xy. Пусть y - это длина стороны, примыкающей к стене. Тогда по условию должно выполняться равенство 2x + y = a. Поэтому y = a - 2x и S = x(a - 2x), где 0 x a/2 (длина и ширина площадки не могут быть отрицательными). S = a - 4x, a - 4x = 0 при x = a/4, откуда y = a - 2a/4 =a/2. Поскольку x = a/4 - единственная критическая точка, проверим, меняется ли знак производной при переходе через эту точку. При x 0, а при x >a/4 S <0, значит, в точке x=a/4 функция S имеет максимум. Значение функции S(a/4) = a/4(a - a/2) = a2 /8 (кв. ед).

Поскольку S непрерывна на [0, a/2] и ее значения на концах S(0) и S(a/2) равны нулю, то найденное значение будет наибольшим значением функции. Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является y = 2x.

Пример 3.24. Требуется изготовить закрытый цилиндрический бак вместимостью V=16 50 м3. Каковы должны быть размеры бака (радиус R и высота Н), чтобы на его изготовление пошло наименьшее количество материала?

Решение. Площадь полной поверхности цилиндра равна S = 2R(R+Н). Мы знаем объем цилиндра V = R2Н Н = V/R2 =16/ R2 = 16/ R2. Значит, S(R) = 2(R2+16/R). Находим производную этой функции: S (R) = 2(2R- 16/R2) = 4 (R- 8/R2). S (R) = 0 при R3 = 8, следовательно, R = 2, Н = 16/4 = 4.

7.4 Раскрытие неопределенностей. Правило Лопиталя

1. Неопределенность вида 0/0. Первое правило Лопиталя.

Если = 0, то , когда последний существует.

2. Неопределенность вида /. Второе правило Лопиталя.

Если = , то , когда последний существует.

3. Неопределенности вида 0 , - , 1 и 00 сводятся к неопределенностям 0/0 и / путем алгебраических преобразований.

Пример 3.25. Найти предел функции y = при x 0.

Решение. Имеем неопределенность вида -. Сначала преобразуем ее к неопределенности вида 0/0, для чего достаточно привести дроби к общему знаменателю. К полученному выражению два раза применим правило Лопиталя. Записывая последовательно все промежуточные вычисления, будем иметь:

= = = = = = .

Пример 3.26. Найти .

Решение. Раскрывая неопределенность вида / по правилу Лопиталя, получаем:

= = =0.

Пример 3.27. Вычислить .

Решение. Имеем неопределенность вида 1. Обозначим искомый предел через A. A = .

Тогда ln A = = = = 2, A = e2.

7.5 Частные производные. Метод наименьших квадратов

Пусть D(x, y) - некоторое множество точек плоскости Oxy. Если каждой упорядоченной паре чисел (x, y) из области D соответствует определенное число z Z R, то говорят, что z есть функция двух независимых переменных x и y. Переменные x и y называются независимыми переменными, или аргументами, D - областью определения, или существования, функции, а множество Z всех значений функции - областью ее значений. Функциональную зависимость z от x и y записывают в виде z = f(x, y), z = z(x, y), z = F(x, y) и т.д. Например, объем цилиндра V = R2Н есть функция от радиуса R его основания и от высоты Н, т.е. V = f(R, Н), которая дает возможность, зная значения независимых переменных R и Н, установить соответствующее значение для V.

В экономических исследованиях часто используется производственная функция Кобба-Дугласа , где z - величина общественного продукта, x - затраты труда, y - объем производственных фондов (обычно z и y измеряются в стоимостных единицах, x - в человеко-часах); A, , - постоянные. Функция Кобба-Дугласа является функцией двух независимых переменных: z = f(x, y). Частное значение функции z = f(x, y) при x = xo, y=yo обозначается zo= f(xo, yo). Геометрически область определения функции D представляет собой конечную или бесконечную часть плоскости, ограниченную линиями, которые могут принадлежать или не принадлежать этой области. В первом случае область D называется замкнутой и обозначается D, во втором случае - открытой. Наподобие того, как функция y = f(x) геометрически иллюстрируется своим графиком, можно геометрически истолковать и уравнение z = f(x, y). Возьмем в пространстве R3 прямоугольную систему координат и изобразим на плоскости Oxy область D. В каждой точке M(x, y)D восстановим перпендикуляр к плоскости Oxy и отложим на нем значение z = f(x, y). Геометрическое место полученных таким образом точек и явится своего рода пространственным графиком нашей функции. Это будет, вообще говоря, некоторая поверхность, поэтому уравнение z = f(x, y) называется уравнением поверхности. Пара значений x и y определяет на плоскости Oxy точку M(x, y), а z = f(x, y) - аппликату соответствующей точки P(x, y, z) на поверхности. Поэтому говорят, что z есть функция точки M(x, y) и пишут z = f(M).

Функция f(M) имеет предел A, , если разность f(M) - A есть бесконечно малая, когда = MoM 0 при любом способе приближения M к Mo (например, по любой линии).

Функция f(x, y) называется непрерывной в точке Mo, если .

В экономике рассматриваются функции не только от двух, но и большего числа независимых переменных. Например, уровень рентабельности R зависит от прибыли П на реализованную продукцию, величин основных (a) и оборотных (b) фондов, R = П/(a+b), т.е. R является функцией трех независимых переменных R = f(П, a, b). Областью определения функции трех переменных является множество точек пространства R3, но непосредственной геометрической интерпретации для функций с числом аргументов больше двух не существует, однако для них вводятся по аналогии все определения (частные производные, предел, непрерывность и т.д.), сформулированнные для f(x,y).

Аналогично определяется функция n независимых переменных z = f(x1, x2,..., xn).

Областью определения такой функции будет множество D Rn. Примером функций многих переменных в экономике являются производственные функции. При рассмотрении любого производственного комплекса как открытой системы (входами которой служат затраты ресурсов - людских и материальных, а выходами - продукция) производственная функция выражает устойчивое количественное соотношение между входами и выходами. Производственная функция обычно задается уравнением z = f(x1, x2,..., xn), где все компоненты выпуска объединены (по стоимости или в натуре) в одну скалярную величину z, а разнородные производственные ресурсы обозначены как xi.

Частной производной функции нескольких переменных по одной из этих переменных называется производная, взятая по этой переменной при условии, что все остальные переменные остаются постоянными. Для функции двух переменных z = f(x, y) частной производной по переменной x называется производная этой функции по x при постоянном y. Обозначается частная производная по x следующим образом: .

Аналогично частной производной функции z = f(x, y) по аргументу y называется производная этой функции по y при постоянном x. Обозначения:

.

Частными производными второго порядка функции z = f(x, y) называются частные производные от ее частных производных первого порядка. Если первая производная была взята, например, по аргументу x, то вторые производные обозначаются символами .

Пусть функция z = f(x, y) определена в области D и точка Mo(xo, yo) будет внутренней точкой этой области. Говорят, что функция f(x, y) в точке Mo(xo, yo) имеет максимум (минимум), если ее можно окружить такой окрестностью

(xo - , xo + ; yo - , yo+ ),

чтобы для всех точек этой окрестности выполнялось неравенство

f(x,y) f(xo,yo) ( f(x,y) f(xo,yo)).

Функция многих переменных может иметь максимум или минимум (экстремум) только в точках, лежащих внутри области определения функции, в которой все ее частные производные первого порядка равны нулю или не существует хотя бы одна из них. Такие точки называются критическими. Названные условия являются необходимыми условиями экстремума, но еще не достаточными (они могут выполняться и в точках, где нет экстремума). Чтобы критическая точка была точкой экстремума, должны выполняться достаточные условия. Сформулируем достаточные условия экcтремума для функции двух переменных. Пусть точка Mo(xo, yo) - критическая точка функции z = f(x, y), т.е. , и функция z = f(x, y) имеет непрерывные вторые частные производные в некоторой окрестности точки Mo(xo, yo). Обозначим . Тогда:

1) если 0, то функция z имеет экстремум в точке Mo: максимум при A 0;

2) если 0, то экстремума в точке Mo нет;

3) если = 0, то требуется дополнительное исследование.

Пример 3.28. Исследовать функцию z = y4 - 2xy2 + x2 + 2y + y2 на экстремум.

Решение. Находим частные производные: = - 2y2 + 2x, = 4y3 - 4xy +2 +2y. Для отыскания критических точек решим систему уравнений: .

Итак, Mo(1,-1) -единственная точка, “подозрительная на экстремум”. Находим вторые частные производные: , следовательно, A=2, B=4, С=10, = 4, т.е. 0, функция имеет экстремум в точке Mo - минимум (A>0). Вычислим z min = (-1)4 - 21(-1)2 +1 - 2 +1 = -1.

В естествознании, технике и экономике часто приходится иметь дело с эмпирическими формулами, т.е. формулами, составленными на основе обработки статистических данных или результатов опытов. Одним из распространенных приемов построения таких формул является метод наименьших квадратов. Изложим идею этого способа, ограничиваясь случаями линейной и квадратичной зависимости. Пусть требуется установить зависимость между двумя величинами x и y, например, между стоимостью потребляемого сырья и стоимостью выпущенной продукции. Произведем обследование n видов продукции и представим результаты исследования в виде таблицы:

x

x1

x2

...

xn

y

y1

y2

...

yn

Из анализа таблицы нелегко обнаружить наличие и характер зависимости между x и y. Поэтому обратимся к графику. Допустим, что точки, взятые из таблицы (опытные точки) группируются около некоторой прямой линии. Тогда можно предположить,что между x и y существует линейная зависимостьy= ax+b, где a и b - коэффициенты, подлежащие определению,y - теоретическое значение ординаты. Проведя прямую “на глаз”, можно графически найти b и a=tg , однако это будут весьма неточные результаты. Для нахождения a, b применяют метод наименьших квадратов.

Перепишем уравнение искомой прямой в виде ax + b -y=0. Точки, построенные на основе опытных данных, вообще говоря, не лежат на этой прямой. Поэтому если подставить в уравнение прямой вместо x иy заданные величины xi и yi, то окажется, что левая часть уравнения равна какой-то малой величине i=yi -yi; а именно: для первой точки ax1 + b - y1 = 1, для второй - ax2 + b - y2 = 2, для последней - axn + b - yn = n. Величины 1, 2,..., n, не равные нулю, называются погрешностями. Геометрически это разность между ординатой точки на прямой и ординатой опытной точки с той же абсциссой. Погрешности зависят от выбранного положения прямой, т.е. от a и b. Требуется подобрать a и b таким образом, чтобы эти погрешности были возможно меньшими по абсолютной величине. Способ наименьших квадратов состоит в том, что a и b выбираются из условия, чтобы сумма квадратов погрешностей u = была минимальной. Если эта сумма квадратов окажется минимальной, то и сами погрешности будут в среднем малыми по абсолютной величине. Подставим в выражение для u вместо i их значения.

u = (ax1 + b - y1) 2 + (ax2 + b - y2) 2 +... + ( axn + b - yn)2, или u = u(a,b),

где xi, yi известные величины, a и b - неизвестные, подлежащие определению. Выберем a и b так, чтобы u(a,b) имело наименьшее значение. Необходимые условия экстремума , . Имеем: = 2(ax1 + b - y1)x1 +... +2 (ax1 + b - y1)xn, = 2(ax1 + b - y1) +... + + 2 (ax1 + b - y1). Получаем систему:

.

Эта система называется нормальной системой метода наименьших квадратов. Из нее находим a и b и затем подставляем их в эмпирическую формулу y = ax + b. Пусть теперь точки на графике располагаются вблизи некоторой параболы так, что между x и y можно предположить квадратичную зависимость:y=ax2 + bx + c, тогда . Тогда u = = . Здесь u = u(a, b, c) - функция трех независимых переменных a, b, c. Необходимые условия экстремума , , в этом случае примут следующий вид:

.

Получили нормальные уравнения способа наименьших квадратов для квадратичной зависимости y = ax2 + bx + c, коэффициенты которой находим, решая систему трех линейных уравнений с тремя неизвестными.

Отыскание уравнения прямой по эмпирическим данным называется выравниванием по прямой, а отыскание уравнения параболы - выравниванием по параболе. В экономических расчетах могут встретиться также и другие функции. Довольно часто встречаются эмпирические формулы, выражающие обратно пропорциональную зависимость, графически изображаемую гиперболой. Тогда говорят о выравнивании по гиперболе и т.д.

Метод наименьших квадратов оказывается весьма эффективным при исследовании качества промышленной продукции в зависимости от определяющих его факторов на основе статистических данных текущего контроля качества продукции, в задачах моделирования потребительского спроса.

Пример 3.29. Темпы роста y производительности труда по годам в промышленности республики приведены в таблице.

x

1

2

3

4

5

6

7

8

y

100

156

170

184

194

295

220

229

Предполагая, что зависимость y от x линейная: y = ax + b, найти a и b.

Решение. Вычислим коэффициенты нормальной системы уравнений: .

Следовательно, имеем систему , решая которую, получим: a 15,93; b 110,57. Итак, получили уравнение искомой прямой: y = 15,93x + 110,57.

8. Интегралы

8.1 Основные методы интегрирования

Функция F(x), дифференцируемая в данном промежутке X, называется первообразной для функции f(x), или интегралом от f(x), если для всякого x X справедливо равенство:

F (x) = f(x). (8.1)

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
421
Средний доход
с одного платного файла
Обучение Подробнее