85843 (Связь комбинаторики с различными разделами математики), страница 2

2016-07-29СтудИзба

Описание файла

Документ из архива "Связь комбинаторики с различными разделами математики", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85843"

Текст 2 страницы из документа "85843"

Решение. (В остальных задачах будем использовать обозначения, аналогичные обозначениям в этой задаче). Поскольку каждую из восьми вершин куба можно раскрасить тремя способами, причём независимо от того, как раскрашены другие вершины, то множество всех вершин куба можно раскрасить 38=6561 различными способами (по формуле ). Однако при таком подходе к решению задачи молчаливо предполагается, что мы умеем различать вершины куба перед окраской, то есть, скажем, куб жёстко закреплён или его вершины занумерованы. При этом полученный ответ можно интерпретировать следующим образом: можно так раскрасить 38 абсолютно одинаковых, жёстко закреплённых кубов, что все они будут различаться. Для 38+1 кубов этого сделать уже нельзя. Ситуация существенно меняется, если мы откажемся от предположения о том, что кубы жёстко закреплены, так как по-разному окрашенные кубы можно повернуть так, что в новом положении их окраски совпадут (рис.2).

Е стественно считать, что два куба раскрашены одинаково, если их раскраски совпадают вплоть до способа размещения кубов в пространстве, то есть вплоть до некоторого вращения одного из кубов. Будем говорить, что такие раскраски кубов геометрически неотличимы. Поэтому естественным уточнением задачи о раскраске является следующая задача: сколькими геометрически различными способами можно раскрасить вершины куба в три цвета.

Переформулируем теперь эту задачу так, чтобы стала понятной её связь с леммой Бернсайда. Пусть М – множество всевозможных по-разному раскрашенных кубов одного размера, положение которых в пространстве фиксировано (|M|=38), G – группа всех вращений куба. Группа G естественным образом определяет группу перестановок на множестве М. Именно, если α G некоторое вращение, то каждому кубу из М можно сопоставить некоторый другой куб, который получается из первого при вращении α. Это соответствие является перестановкой на М, которую будем обозначать . Группу всех таких перестановок множества М, определяемых перестановками из G будем обозначать . Ясно, что | | = |G|. То, что два куба К1 и К2 из М раскрашены геометрически одинаково, означает, что один из них можно перевести вращением в такое положение, в котором они неразличимы. Иными словами, существует такая перестановка , что 1) = К2, то есть К1 и К2 содержатся в одной орбите группы , действующей на множестве М. Таким образом, для того чтобы определить число геометрически различимых способов раскраски вершин куба, нужно найти количество орбит группы на множестве М. Считая вершины кубов занумерованными числами 1, 2, 3, 4, 5, 6, 7, 8, раскраску каждого из 38 кубов можно однозначно охарактеризовать «словом» из восьми букв, каждая из которых есть либо к, либо с, либо з. То, что i-тая буква слова равна к (или с, или з) означает, что i-тая вершина при выбранной нумерации окрашена в красный цвет (или в синий, или в зелёный соответственно). Перестановки из группы переставляют последовательности букв к, с, з. Для того чтобы применить лемму Бернсайда, необходимо определить число неподвижных точек каждой перестановки из . Последовательность букв к, с, з будет неподвижной для перестановки тогда и только тогда, когда при разложении соответствующей перестановки α G в произведение циклов вершины куба, номера которых входят в один и тот же цикл, окрашены одним цветом. Если перестановка α G разложена в произведение k циклов, то число её неподвижных точек равно 3k, где , так как вершины куба, номера которых входят в один цикл, можно раскрасить тремя способами. Опишем разложения в произведение циклов для всех перестановок из группы G вращений куба.

а) Вокруг каждой из трёх осей, соединяющих центры противоположных граней, имеется три вращения на углы , , . Им соответствуют перестановки:

1) (1, 5, 8, 4) (2, 6, 7, 3)

2) (1, 8) (2, 7) (3, 6) (4, 5)

3) (1, 4, 8, 5) (2, 3, 7, 6)

4) (1, 4, 3, 2) (5, 8, 7, 6)

5) (1, 3) (2, 4) (5, 7) (6, 8)

6) (1, 2, 3, 4) (5, 6, 7, 8)

7) (1, 5, 6, 2) (3, 4, 8, 7)

8) (1, 6) (2, 5) (3, 8) (4, 7)

9) (1, 2, 6, 5) (3, 7, 8, 4)

б) Вокруг каждой из четырёх диагоналей куба имеется по два вращения. Им соответствуют перестановки:

10) (1) (2, 5, 4) (3, 6, 8) (7)

11) (2) (1, 3, 6) (4, 7, 5) (8)

12) (3) (1, 6, 8) (2, 7, 4) (5)

13) (4) (1, 3, 8) (2, 7, 5) (6)

14) (1) (2, 4, 5) (3, 8, 6) (7)

15) (2) (1, 6, 3) (4, 5, 7) (8)

16) (3) (1, 8, 6) (2, 4, 7) (5)

17) (4) (1, 8, 3) (2, 5, 7) (6)

в) Вокруг каждой из шести осей, соединяющих середины противоположных рёбер куба, имеется одно вращение. Им соответствуют перестановки:

18) (1, 5) (2, 8) (3, 7) (4, 6)

19) (1, 2) (3, 5) (4, 6) (7, 8)

20) (1, 7) (2, 3) (4, 6) (5, 8)

21) (1, 7) (2, 6) (3, 5) (4, 8)

22) (1, 7) (2, 8) (3, 4) (5, 6)

23) (1, 4) (2, 8) (3, 5) (6, 7)

Вместе с тождественной перестановкой (1)(2)(3)(4)(5)(6)(7)(8) получаем 24 перестановки – все элементы группы G. Итак, в группе G вращений куба имеется:

1 перестановка типа ,

6 перестановок типа ,

9 перестановок типа ,

8 перестановок типа .

Тогда перестановка первого типа имеет 38 неподвижных точек, любая из перестановок второго типа – 32, третьего и четвёртого типов – 34 неподвижных точек (по формуле nk = nk). Поэтому согласно лемме Бернсайда, имеем (38 + 6∙32 + 9∙34 + 8∙34) = 333.

Таким образом, число геометрически различимых способов раскраски вершин куба в три цвета равно 333.

Задача 2. Сколько различных ожерелий из семи бусин можно составить из бусин двух цветов – красного и синего?

Решение. Переформулируем эту задачу следующим равносильным образом: сколькими геометрически различными способами можно раскрасить вершины правильного семиугольника в два цвета? Пусть М – множество всевозможных по-разному раскрашенных правильных семиугольников одного размера, положение которых в пространстве фиксировано. Тогда имеется 27 = 128 различных вариантов раскраски вершин семиугольника, так как каждую вершину независимо от других можно раскрасить двумя способами. Здесь два способа раскраски неотличимы, если один из них можно получить из другого, применяя к семиугольнику либо преобразования вращения, либо симметрии относительно осей. Будем описывать раскраски «словами» длины 7, составленными из букв к (вершина окрашена в красный цвет) и с (вершина окрашена в синий цвет). Проделаем те же действия, что и в задаче 1 для применения леммы Бернсайда. Опишем разложения в произведение циклов для всех перестановок из группы G.

а) Тождественному преобразованию соответствует перестановка:

1) (1)(2)(3)(4)(5)(6)(7)

б) Поворотам на углы соответствуют перестановки:

2) (1,2,3,4,5,6,7)

3) (1,3,5,7,2,4,6)

4) (1,4,7,3,6,2,5)

5) (1,5,2,6,3,7,4)

6) (1,6,4,2,7,5,3)

7) (1,7,6,5,4,3,2)

в) Симметриям относительно осей, соединяющих вершины семиугольника с серединами противоположных сторон, соответствуют перестановки:

8) (1) (2,7) (3,6) (4,5)

9) (2) (1,3) (7,4) (5,6)

10) (3) (2,4) (1,5) (6,7)

11) (4) (3,5) (2,6) (7,1)

12) (5) (4,6) (3,7) (2,1)

13) (6) (5,7) (4,1) (2,3)

14) (7) (1,6) (2,5) (3,4),

где 1, 2, 3, 4, 5, 6, 7 – числа, с помощью которых занумерованы вершины семиугольника.

Итак, в группе G имеется:

1 перестановка типа ,

6 перестановок типа ,

7 перестановок типа .

Слово неподвижно относительно перестановки тогда и только тогда, когда буквы, стоящие на местах с номерами из одного цикла в перестановке α, совпадают. Поэтому тождественная перестановка имеет 27 неподвижных точек на М, перестановки второго типа – по 2, а перестановки третьего типа – по 24. Применяя лемму Бернсайда, получаем

(27 + 6∙2 + 7∙24) = 18.

Итак, из бусин двух цветов можно составить 18 семибусенных ожерелий.

Задача 3. Грани куба можно раскрасить: а) все в белый цвет; б) все в чёрный цвет; в) часть в белый, а остальные в чёрный. Сколько имеется разных способов раскраски?

Решение.

Грань (1' 4' 5' 8') – 1

Грань (2' 3' 6' 7') – 2

Грань (3' 4' 7' 8') – 3

Грань (1' 2' 5' 6') – 4

Грань (1' 2' 3' 4') – 5

Грань (5' 6' 7' 8') – 6

Рис. 3

а) Вокруг каждой из трёх осей, соединяющих центры противоположных граней, имеется три вращения на углы , , . Им соответствуют перестановки:

1) (1) (2) (5, 4, 6, 3)

2) (1) (2) (4, 3) (6, 5)

3) (1) (2) (5, 3, 6, 4)

4) (3) (4) (1, 6, 2, 5)

5) (3) (4) (1, 2) (6, 5)

6) (3) (4) (5, 2, 6, 1)

7) (5) (6) (1, 3, 2, 4)

8) (5) (6) (1, 2) (3, 4)

9) (5) (6) (4, 2, 3, 1)

б) Вокруг каждой из четырёх диагоналей куба имеется по два вращения. Им соответствуют перестановки:

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее