49124 (Сравнительный анализ численных методов)

2016-07-29СтудИзба

Описание файла

Документ из архива "Сравнительный анализ численных методов", который расположен в категории "". Всё это находится в предмете "информатика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "49124"

Текст из документа "49124"

Министерство образования и науки Республики Казахстан

Карагандинский Государственный Технический Университет

Кафедра ____САПР______

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

По дисциплине: ”Математическое обеспечение САПР"

Тема: "Сравнительный анализ численных методов"

Руководитель

(подпись) (дата)

Студент

(подпись) (дата)

2009

Содержание

Введение

1. Постановка задачи

2. Методы решения нелинейных уравнений

2.1 Общие сведения

2.2 Метод касательных (метод Ньютона)

2.2.1 Общие сведения

2.2.2 Решение нелинейного уравнения методом касательных

2.3 Метод хорд

2.3.1 Общие сведения

2.3.2 Решение нелинейного уравнения методом хорд

2.4 Вывод

2.5 Метод простых итераций

2.5.1 Общие сведения

2.5.2 Решение нелинейного уравнения методом простых итераций

2.6 Программа для решения нелинейных уравнений

3. Решение нелинейных уравнений методом интерполирования

3.1 Интерполяция

3.2 Многочлен Лагранжа

3.3 Интерполяция сплайнами

3.4 Использование интерполяции на практике

3.4.1 Интерполяция с помощью многочлена Лагранжа

3.4.2 Обратная интерполяция

3.4.3 Интерполяция сплайнами

3.5 Программа для использования интерполяции

4. Итерационные методы решения систем линейных алгебраических уравнений

4.1 Общие сведения

4.2 Метод простой итерации

4.2.1 Описание метода

4.2.2 Решение СЛАУ методом простых итераций

4.2.3 Программа для решения СЛАУ методом простых итераций

4.3 Метод Зейделя

4.3.1 Описание метода

4.3.2 Решение СЛАУ методом Зейделя

4.3.3 Программа дл решения СЛАУ методом Зейделя

4.4 Сравнительный анализ

5. Сравнительный анализ различных методов численного дифференцирования и интегрирования

5.1 Методы численного дифференцирования

5.1.1 Описание метода

5.1.2 Нахождение производной

5.2 Методы численного интегрирования

5.2.1 Общие сведения

5.2.2 Нахождение определенного интеграла

5.3 Решение ОДУ

5.3.1 Решение ОДУ методом Эйлера

5.3.2 Решение ОДУ методом Рунге-Кутты

6.Численные методы решения обыкновенных дифференциальных уравнений

6.1 Общие сведения

6.2 Метод Эйлера

Заключение

Список использованной литературы


Введение

На практике в большинстве случаев найти точное решение возникшей математической задачи не удается. Это происходит главным образом не потому, что мы не умеем этого сделать, а поскольку искомое решение обычно не выражается в привычных для нас элементарных или других известных функциях. Поэтому важное значение приобрели численные методы, особенно в связи с возрастанием роли математических методов в различных областях науки и техники и с появлением высокопроизводительных ЭВМ.

Под численными методами подразумеваются методы решения задач, сводящиеся к арифметическим и некоторым логическим действиям над числами, т.е. к тем действиям, которые выполняет ЭВМ.

В настоящее время появилось значительное число различных программных продуктов (MathCAD, MathLAB и т.д.), с помощью которых, задавая только входные данные, можно решить значительное число задач.

Конечно, использование таких программных продуктов значительно сокращает время и ресурсы по решению ряда важных задач. Однако, использование этих программ без тщательного анализа метода, с помощью которого решается задача, нельзя гарантировать, что задача решена правильно. Поэтому для более полного понимания того, как осуществляется расчет различного вида уравнений и их систем, необходимо теоретически изучить методы их решения и на практике их проработать.

Целью выполнения данного курсового проекта является приобретение практических навыков решения нелинейных уравнений, системы линейных алгебраических уравнений, обыкновенных дифференциальных уравнений различными численными методами.


1. Постановка задачи

Порядок выполнения:

По итерационным методам решения нелинейных уравнений:

Определить корень в заданном или любом выбранном отрезке методом хорд, касательных, простых итераций.

Используя результаты решений, указать наименьший полученный отрезок, в котором содержится корень уравнения.

Для каждого метода и каждой задачи построить график функции на [a,b] и убедиться в выполнении условия сходимости итерационной процедуры.

Используя функции f (x) из п.1, построить интерполяционный многочлен L4 (x) на [a,b], использовав в качестве узловых a и b, остальные необходимые узловые точки выбрать, разделив промежуток [a,b] на почти равные части. Вычислить значения f (x) и L4 (x) в двух точках, одна из которых - середина крайней части, а вторая - середина части, содержащей точку . Сравнить полученные величины. Используя эти же узловые точки, провести обратную интерполяцию и определить значение х при y=0. Полученный результат сравнить с ранее найденным решением уравнения.

Сравнить результаты решения СЛАУ методом простой итерации и методом Зейделя на различных шагах итерации.

Провести сравнительный анализ различных методов численного дифференцирования и интегрирования.

Найти численное решение обыкновенного дифференциального уравнения методом Эйлера и уточненным методом Эйлера с 5-ю и 20-ю шагами и сравнить их, если возможно с результатом точного решения ОДУ.


2. Методы решения нелинейных уравнений

2.1 Общие сведения

Рассмотрим уравнение вида f (x) =0, (2.1), где f (x) - любая нелинейная функция.

Корнем уравнения (2.1) называется значение , при котором . Способы приближенного решения, т.е. алгоритм решения, предполагает определение x* c некоторой наперед заданной точностью.

Для нахождения корней уравнения (2.1) различают следующие два этапа.

Отделения (локализации) корней, т.е. нахождение таких интервалов по аргументу x, внутри каждого из которых существует только один корень уравнения (2.1). Если у функции на концах исследуемого отрезка [a,b] функция имеет разные знаки, то на этом отрезке функция имеет не менее одного корня. Если же одинаковые знаки, то функция может не иметь корней или иметь четное число корней. Следовательно, локализация заключается в том, что необходимо установить отрезки, на которых есть смена знаков функции и, кроме того, выполнено условие единственности корня, т.е. функция на этом отрезке должна иметь первую производную с постоянным знаком. Из условия сходимости итерационной последовательности также требуется, чтобы вторая производная не меняла знак, т.е. на исследуемом отрезке функция бала бы только выпуклой или вогнутой.

Уточнение корней заключается в применении некоторого итерационного метода, в результате которого корень уравнения (2.1) может быть получен с любой наперед заданной точностью ε. При этом, останавливая процесс на какой-либо конечной итерации, необходимо оценить погрешность по сравнению с точным корнем, который неизвестен. Выбранный метод позволяет построить последовательность х1, х2, х3, …, хk, … приближений к корню. Итерационный процесс состоит в последовательном уточнении начального приближения х0. Каждый такой шаг называется итерацией. В результате итераций находится последовательность приближенных значений корня х1, х2, х3, …, хk, … Если эти значения с ростом k стремятся к истинному значению корня , то итерационный процесс сходится.

Основными методами решения нелинейных уравнений, реализованных в виде численной процедуры, являются итерационные методы.

2.2 Метод касательных (метод Ньютона)

2.2.1 Общие сведения

Метод Ньютона, называемый также методом касательных, состоит в следующем. Рассмотрим в точке x0 касательную к кривой y=f (x), задаваемую уравнением

y= f (x0) + (x-x0) f ’ (x0).

За начальное приближение x0 принимается один из концов отрезка [a, b], где значение функции имеет такой же знак, что и 2-я производная. Функция f (x) должна удовлетворять на отрезке [a, b] следующим условиям:

1) существование производных 1-го и 2-го порядков;

2) f ’ (x) 0;

3) производные 1-го и 2-го порядков знакопостоянны на отрезке [a, b].

Положим y=0, находим точку x1 пересечения касательной с осью абсцисс:

x1= х0 - f (х0) /f ’ (х0).

Построив касательную в точке x1 (рисунок 2.1), получаем по аналогичной формуле точку x2 пересечения этой касательной с осью x и т.д. Формула для n-го приближения имеет вид:

хnn-1 - F (хn-1) /F’ (хn-1), n=1,2,…

Рисунок 2.1 - Метод касательных

В этом методе на n-й итерации проводится касательная к кривой y =f (x) при х=xn-1 и ищется точка пересечения касательной с точкой абсцисс. При этом необязательно задавать отрезок [a,b], содержащий корень уравнения, а достаточно лишь найти некоторое начальное приближение корня х.

Итерационный процесс останавливают при выполнении условия ; где ε - заданная точность.

2.2.2 Решение нелинейного уравнения методом касательных

1. Дано уравнение tg (0.36*x +0.4) =x2. Решить его методом касательных с точностью решения =0,001.

Для нахождения корня исследуем функцию

.

График функции представлен на рисунке 2.2

Рисунок 2.2 - График исследуемой функции

Находим отрезок, в котором функция монотонно возрастает или убывает, а также где концы отрезка будут иметь разные знаки.

Выбираем концы отрезка: a= -1; b = 0. График функции на этом отрезке представлен на рисунке 2.3

Рисунок 2.3 - График функции на выбранном отрезке

Проверяем существование корня на отрезке по условию

f (-1) = - 0,95998

f (0) =0,42279

0,405869<0, следовательно, на данном промежутке корень есть.

Исследуем функцию на монотонность:

Экстремумов на выбранном отрезке нет.

Находим первую производную функции:

В точке a первая и вторая производные равны:

,

В точке b первая и вторая производные равны:

,

Выбираем тот конец отрезка, который совпадает со знаком 2-ой производной.

, x0=-1, -0,95998* ( ) =1,90998;

По формуле

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее