46391 (Информационная система университета), страница 7

2016-07-29СтудИзба

Описание файла

Документ из архива "Информационная система университета", который расположен в категории "". Всё это находится в предмете "информатика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "46391"

Текст 7 страницы из документа "46391"

Клиент также постоянно оперирует с переменными "Сетевое имя", "Приоритет", "Пароль", "Ок". Они служат для получения права опубликования своих объявлений в системе, и для отправки и получения пакетов от сервера.

10. Надежность ПО

10.1. Аналитические модели надежности

Аналитическое /15-17/ моделирование НПС включает четыре шага:

  • определение предположений, связанных с процедурой тестирования ПС;

  • разработка или выбор аналитической модели, базирую­щейся на предположениях о процедуре тестирования;

  • выбор параметров моделей с использованием полученных данных;

  • применение модели - расчет количественных показателей надежности по модели.

10.2. Динамические модели надежности

Модель Шумана. Исходные данные для модели Шумана, которая относится к динамическим моделям дискретного времени, собираются в процессе тестирования ПС в течение фиксированных или случайных временных интервалов. Каждый интервал - это стадия, на которой выполняется последователь­ность тестов и фиксируется некоторое число ошибок.

Модель Шумана может быть использована при определенным образом организованной процедуре тестирования. Использова­ние модели Шумана предполагает, что тестирование проводится в несколько этапов. Каждый этап представляет собой выполнение программы на полном комплексе разработанных тестовых данных. Выявленные ошибки регистрируются (соби­рается статистика об ошибках), но не исправляются. По завер­шении этапа на основе собранных данных о поведении ПС на очередном этапе тестирования может быть использована модель Шумана для расчета количественных показателей надежности. После этого исправляются ошибки, обнаруженные на предыдущем этапе, при необходимости корректируются тестовые наборы и проводится новый этап тестирования. При использовании модели Шумана предполагается, что исходное количество ошибок в программе постоянно и в процессе тести­рования может уменьшаться по мере того, как ошибки выяв­ляются и исправляются. Новые ошибки при корректировке не вносятся. Скорость обнаружения ошибок пропорциональна числу оставшихся ошибок. Общее число машинных инструкций в рамках одного этапа тестирования постоянно.

Предполагается, что до начала тестирования в ПС имеется Ет ошибок. В течение времени тестирования обнаруживается c ошибок в расчете на команду в машинном языке.

Таким образом, удельное число ошибок на одну машинную команду, оставшихся в системе после т времени тестирования, равно:

, (1)

где IT общее число машинных команд, которое предполагается постоянным в рамках этапа тестирования.

Автор предполагает, что значение функции частоты отказов Z(t) пропорционально числу ошибок, оставшихся в ПС после израсходованного на тестирование времени :

, (2)

где С — некоторая константа;

t — время работы ПС без отказа.

Тогда, если время работы ПС без отказа 1 отсчитывается от точки t = 0, а остается фиксированным, функция надежности, или вероятность безотказной работы на интервале времени от 0 до t, равна:

; (3)

. (4)

Из величин, входящих в формулы (3) и (4), не известны на­чальное значение ошибок в ПС (ЕT) и коэффициент пропорцио­нальности - С. Для их определения прибегают к следующим рассуждениям. В процессе тестирования собирается информа­ция о времени и количестве ошибок на каждом прогоне, т.е. общее время тестирования складывается из времени каждого прогона:

. (5)

Предполагая, что интенсивность появления ошибок постоян­на и равна , можно вычислить ее как число ошибок в единицу времени:

, (6)

где Аi — количество ошибок на i-м прогоне.

. (7)

Имея данные для двух различных моментов тестирования a и b, которые выбираются произвольно с учетом требования, чтобы c(b)< c(A) можно сопоставить уравнения (4) и (7) при:

, (8)

. (9)

Вычисляя отношения (8) и (9), получим:

. (10)

Подставив полученную оценку параметров ET, в выражение (8), получим оценку для второго неизвестного параметра:

. (11)

Получив неизвестные Е и С, можно рассчитать надежность программы по формуле (3).

Позднее автором предложена модифицированная модель, не учитывающая число машинных команд, т.е. независимая от IT

Функция частоты отказов в течение 1-го интервала тестиро­вания остается постоянной и равна:

, t0, i=1,2,…m. (12)

Известные параметры модели ЕT и С автор предлагает вычис­лять из следующих соотношений:

, (13)

, (14)

где i( — время i-го прогона (время i-го интервала);

mi’ — число прогонов, завершившихся отказом в i-ом интервале (число ошибок в i-м интервале);

m — общее число тестовых интервалов;

ni — общее число ошибок, обнаруженных (но не включенных) к i-му интер­валу.

Все эти данные можно получить в ходе тестирования. Вычис­лив значения параметров Е и С, можно определить показатели:

  • число оставшихся ошибок в ПС;

NTT-n; (15)

  • надежность:

, t>0. (16)

Достоинство этой модели по сравнению с предыдущей заклю­чается в том, что можно исправлять ошибки, внося изменения в текст программы в ходе тестирования, не разбивая процесс на этапы, чтобы удовлетворить требованию постоянства числа машинных инструкций.

Модель Lа Раdula. По этой модели выполнение последова­тельности тестов производится в т этапов. Каждый этап закан­чивается внесением изменений (исправлений) в ПС. Возрастаю­щая функция надежности базируется на числе ошибок, обнару­женных в ходе каждого тестового прогона.

Надежность ПС в течение i-го этапа:

, i = 1,2,3,…, (17)

где А—параметр роста;

при i .Т.е R() - предельная надежность ПС.

Эти неизвестные величины автор предлагает вычислить, решив следующие уравнения:

, (18)

, (19)

где Si. — число тестов;

mi, — число отказов во время i-го этапа:

т — число этапов;

i=1,2, ...,т.

Определяемый по этой модели показатель есть надежность ПС на i-м этапе:

, i = m+1, m+2 … (20)

Преимущество модели заключается в том, что она является прогнозной и, основываясь на данных, полученных в ходе тести­рования, дает возможность предсказать вероятность безотказ­ной работы программы на последующих этапах ее выполнения.

Модель Джелинского-Моранды. относится к динамическим моделям непрерывного времени. Исходные данные для использования этой модели собираются в процессе тестирования ПС. При этом фиксируется время до очередного отказа. Основное положение, на котором базируется модель, заключается в том, что значение интерва­лов времени тестирования между обнаружением двух ошибок имеет экспоненциальное распределение с частотой ошибок (или интенсивностью отказов), пропорциональной числу еще не выявленных ошибок. Каждая обнаруженная ошибка устраня­ется, число оставшихся ошибок уменьшается на единицу.

Функция плотности распределения времени обнаружения 1-й ошибки, отсчитываемого от момента выявления 1-1-и ошибки, имеет вид:

, (21)

где i — частота отказов (интенсивность отказов), которая пропорциональна числу еще не выявленных ошибок в программе:

(22)

где N — число ошибок, первоначально присутствующих в программе; С — коэф­фициент пропорциональности.

Наиболее вероятные значения величин и (оценка макси­мального правдоподобия) можно определить на основе данных, полученных при тестировании. Для этого фиксируют время выполнения программы до очередного отказа (t1, t2, t3, … tk,).

Значения и предлагается получить, решив систему уравнений:

, (23)

, (24)

где

Q=В/АК; ; . (25)

Поскольку полученные значения и - вероятностные и точность их зависит от количества интервалов тестирования (или количества ошибок), найденных к моменту оценки надеж­ности, асимптотические оценки дисперсий авторы предлагают определить с помощью следующих формул:

, (26)

, (27)

где

D = KS/C2 и . (28)

Чтобы получить числовые значения i нужно подставить вместо N и С их возможные значения и . Рассчитав К значе­ний по формуле (22) и подставив их в формулу (21), можно определить вероятность безотказной работы на различных вре­менных интервалах. На основе полученных расчетных данных строится график зависимости вероятности безотказной работы от времени.

Модель Шика-Волвертона. Модификация модели Джелинского-Моранды для случая возникновения на рассматриваемом интервале более одной ошибки предложена Волвертоном и Шиком. При этом считается, что исправление ошибок произ­водится лишь после истечения интервала времени, на котором они возникли. В основе модели Шика-Волвертона лежит пред­положение, согласно которому частота ошибок пропорциональ­на не только количеству ошибок в программах, но и времени тестирования, т.е. вероятность обнаружения ошибок с течением времени возрастает. Частота ошибок (интенсивность обнаруже­ния ошибок) i, предполагается постоянной в течение интер­вала времени ti, и пропорциональна числу ошибок, оставшихся в программе по истечении (i - 1)-го интервала; но она пропорцио­нальна также и суммарному времени, уже затраченному на тестирование (включая среднее время выполнения программы в текущем интервале):

. (29)

В данной модели наблюдаемым событием является число ошибок, обнаруживаемых в заданном временном интервале, а не время ожидания каждой ошибки, как это было для модели Желинского-Моранды. В связи с этим модель относят к группе дискретных динамических моделей, а уравнения для опреде­ления С и N имеют несколько иной вид:

, (30)

где

, (31)

. (32)

ti — продолжительность временного интервала, в котором наблюдается Мi ошибок;

Тi-1 — время, накопленное за (i—1) интервалов:

, T0=0 . (33)

ni-1 — суммарное число ошибок, обнаруженных за период от первого до (i -1)-го интервала времени включительно:

, n0=0 . (34)

М — общее число временных интервалов;

— суммарное число обнаруженных ошибок. (35)

При М = 1 уравнения (30) приобретают вид уравнений (21).

Таким образом, модель Джелинского-Моранды является частным случаем модели Шика-Волвертона для случая, когда при тестировании фиксируется время до появления очередной ошибки.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее