25068 (Применение колтюбинговой технологии в бурении), страница 5

2016-07-29СтудИзба

Описание файла

Документ из архива "Применение колтюбинговой технологии в бурении", который расположен в категории "". Всё это находится в предмете "геология" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "геология" в общих файлах.

Онлайн просмотр документа "25068"

Текст 5 страницы из документа "25068"

Рис. 11. Укладчик гибкой трубы:1 – реборда; 2 – траверса; 3 – бочка барабана; 4 – рама

Жидкость, приготовленную на углеводородной основе, на поверхность трубы подает насос при вращении барабана, ее излишки стекают с витков, намотанных на последний, в сборник и опять поступают на прием насоса.

Известны конструкции, где для упрощения процесса смачивания поверхности труб барабан располагают в карте­ре, размер которого подбирают таким образом, чтобы витки трубы, лежащие на барабане, были погружены в смазыва­ющую жидкость. В нижней части картера имеется дренажный трубопровод, служащий для слива скапливающейся там воды.

2.4. Система управления агрегатом

К системе управления агрегатом относятся кабина оператора, пульты управления основным и вспомогательным оборудованием.

Учитывая сложные климатические условия, в которых происходит эксплуатация агрегатов, а также особенности организации выполнения работ (использование вахтового метода), к кабине оператора предъявляют достаточно высокие тре­бования:

а) удобство рабочего места оператора;

б) комфортные условия труда с точки зрения обогрева (ох­ла­­ж­дения);

в) хороший обзор рабочей зоны;

г) удобный пульт управления.

Удовлетворение указанных требований должно сочетаться с обеспечением допустимых габаритов агрегата и ограничений нагрузки на колеса транспортной базы. Поэтому при конструировании кабин управления следует учитывать их размещение в транспортном и рабочем положениях. В большинстве зарубежных агрегатов кабина оператора, находящаяся за кабиной водителя транспортного средства, снабжена гидроприводом, обеспечивающим ее вертикальное перемещение в пределах 1 – 1,5 м. Известны технические решения, в которых перевод кабины в рабочее положение осуществляется путем ее поворота. И в том, и в дру­гом случаях появляется более удобный обзор барабана с наматываемой на него гибкой трубой, укладчика трубы и устьевого оборудования, прежде всего транспортера.

На пульте управления агрегата располагают весь комплекс контрольно-измерительных приборов и органов управления. К первым относятся приборы, контролирующие режимы работ при­водного двигателя и всех систем гидропривода, длину трубы, спущенной в скважину, и давление технологической жидкости, а ко вторым – органы управления транспортером, уплотнителем, барабаном, укладчиком трубы и приводным двигателем.

В зависимости от конструктивных особенностей агрегата применяют гидравлические или электрогидравлические системы управления.

3.ОСНОВНЫЕ УЗЛЫ АГРЕГАТОВ, ИХ РАСЧЕТ И КОНСТРУИРОВАНИЕ

3.1. ТРАНСПОРТЕР КОЛОННЫ ГИБКИХ ТРУБ (ИНЖЕКТОР)

Кинематический расчет

Цель расчетов, приведенных в данном разделе, заключается в определении взаимосвязи скорости перемещения колонны гибких труб и подачи рабочей жидкости гидропривода к гидромоторам транспортера.

Два гидромотора, приводящие в действие цепи транспортера, получают рабочую жидкость от насоса того же типа, что и каждый гидромотор.

Подача насоса

Qф = qкnфK0/1000,

где qк – объем рабочей камеры насоса (qк = 112 см3); nф – фактическая частота вращения вала гидромотора; коэффициента подачи насоса K0 = 0,95.

При nф = 1500 об/мин Qф = 11215000,95/1000 = 159,6 л/мин.

Угловая скорость вращения вала гидромотора

г = [(Qф/2)Kом1000]/30qк,

где Kом – объемный КПД гидромотора (Kом = 0,95).

Соответственно угловая скорость вращения звездочки инжекторного механизма

г = [(Qф/2)Kом1000]/30iqк,

где i – передаточное отношение редуктора транспортера.

Скорость подъема непрерывной трубы

v = гR,

где R – радиус звездочки, которая приводит в действие цепь инжекторного механизма (R = 114 мм).

В результате

v = [R(Qф/2)Kом1000]/30iqк.

Скорость перемещения трубы при номинальной частоте вращения вала приводного двигателя

v = [0,114(159,6/2)3,140,951000]/3024112 = 0,336 м/с.

При работе приводного двигателя с максимальной час­тотой вращения nф = 1800 об/мин, подача насосов Qф = 191 л/мин и соответственно скорость перемещения трубы v = 0,4 м/с.

Определение допускаемого усилия на плашки

Усилие, с которым плашки воздействуют на трубу, однозначно связано с величинами напряжений, возникающих в последней. Для определения максимально допустимого значения усилий проследим взаимосвязь внутренних силовых фак­торов и внешней нагрузки.

Для оценки напряжений, возникающих в продольных сечениях гибкой трубы, сжатой плашками, рассмотрим возможные варианты их взаимодействия, которые определяют картину приложения внешних сил к трубе.

В дальнейшем примем следующие допущения, которые, как показывает практика, достаточно обоснованы: плашка пред­ставляет собой абсолютно жесткий монолит, а труба – упругое тело.При взаимодействии плашек с трубой возможны три варианта приложения сил:

а) при Rтр.н < Rп возникает ситуация, изображенная на рис. 12, а;

б) при Rтр.н > Rп имеет место вариант, представленный на рис. 12, в;

в) при Rтр.н = Rп характерной является картина, изображенная на рис. 12, б.

Здесь Rтр.н – наружный радиус гибкой трубы, Rп – радиус кривизны контактной поверхности плашек.

Картины взаимодействия плашки и трубы, представленные на рис. 12, а, в, могут наблюдаться не только при несоответ­ствии размеров трубы и плашки, но и при деформации поперечного сечения трубы. Помимо этого встречаются и другие варианты приложения нагрузки, например, несимметричный. В этом случае каждая из плашек по-своему взаимодействует с трубой.

Рис. 12. Схема взаимодействия плашек транспортера с гибкой трубой:

при сжатии трубы: а – двумя сосредоточенными силами, б – равномерно распределенной нагрузкой, в – двумя парами сосредоточенных сил

Для определения наиболее опасного с точки зрения прочности трубы случая взаимодействия плашки с ее поверхностью рассмотрим внутренние силовые факторы (см. рис. 12), возникающие при различных вариантах приложения сил .

Приложение двух сосредоточенных сил. Этот случай соответствует соотношению Rтр.н < Rп (см. рис. 12, а). При этом в поперечных сечениях трубы с угловой координатой  действуют следующие силы:

нормальная

N() = 0,5Рsin;

поперечная

Q() = 0,5Рсos;

изгибающий момент

M() = РRтр.н(0,3183 – 0,5sin).

Приложение двух пар сосредоточенных сил. Этот случай соответствует соотношению Rтр.н > Rп. Здесь также в качестве координаты рассматриваемого сечения принят угол .

Нормальная сила:

интервал 0    

N() = –(P/2)[0,3183сos(sin2 – sin2)];

интервал     

N() = –(P/2)[0,3183сos(sin2 –sin2) + sin];

нтервал     

N() = –(P/2)[0,3183сos(sin2 – sin2)].

Поперечная сила:

интервал 0    

Q() = (–P/2)[0,3183sin(sin2 – sin2)];

интервал     

Q() = (–P/2)[0,3183sin(sin2 – sin2) + сos];

интервал     

Q() = (–P/2)[0,3183sin(sin2 – sin2)].

Изгибающий момент:

интервал 0    

M() = (PRтр.н/2)[0,3183(sin + сos – sin – сos –

– sin2сos + sin2сos) – sin + sin];

интервал     

M() = (PRтр.н/2)[0,3183(sin + сos – sin – сos –

– sin2сos + sin2сos) – sin + sin];

интервал     

M() = (PRтр.н/2)[0,3183(sin + сos – sin – сos –

– sin2сos + sin2сos)].

В рассматриваемом случае нагружения трубы предполагают, что каждая из действующих сил равна половине усилия, приложенного к плашке.

Приложение распределенной нагрузки. Этот случай соответствует соотношению Rтр.н = Rп (см. рис. 12, б). Значение  характеризует текущую угловую координату продольного сечения, в которой определяется изгибающий момент, а  – половину угла охвата трубы плашкой. Силовые факторы в поперечных сечениях определяются следующим образом.

Нормальная сила:

интервал 0    

N() = –qRтр.нsin2;

интервал      – 

N() = –qRтр.нsinsin.

Поперечная сила:

интервал 0    

Q() = qRтр.нsinсos;

интервал      – 

Q() = qRтр.нsinсos.

Изгибающий момент:

интервал 0    

M() = qR2тр.н{(1/)[(0,5 + sin2 + 1,5sinсos)] –

– 0,5 sin2 – 0,5sin2};

интервал      – 

M() = qR2тр.н{(1/)[(0,5 + sin2) + 1,5sinсos] –

– 0,5sin2 – sinsin + 0,5sin2}.

Для определения экстремальных значений изгибающих моментов в безразмерной форме были построены эпюры, характеризующие зависимости M() для различных условий приложения нагрузки. Для обеспечения возможности сопоставления получаемых величин по формулам при распределенной нагрузке коэффициент выражен через величину силы P, приложенной к плашке, и ее ширину Lï = 2Rsin. Тогда

qR2тр.н = R2тр.нP/L = R2тр.нP/2Rтр.нsin = PRтр.н/2sin.

Отсюда величины безразмерных изгибающих моментов M1() могут быть представлены следующим образом:

при приложении двух сосредоточенных сил

M1() = M()/PRтр.н = –0,3183 + 0,5sin;

при приложении двух пар сосредоточенных сил

интервал 0    

M1() = M()/2PRтр.н = (1/2)[0,3183(sin + сos – sin –

– сos – sin2сos + sin2сos) – sin + sin];

интервал     

M1() = M()/2PRтр.н = (1/2)[0,3183(sin + сos – sin –

– cos – sin2сos + sin2сos) – sin + sin;

интервал     

M1() = M()/2PRтр.н = (1/2)[0,3183(sin + cos – sin –

– сos – sin2сos) + sin2сos)];

при приложении распределенной нагрузки

интервал 0    

M1() = M()/(PRтр.н) = [1/(2sin)]{(1/)[(0,5 +

+ sin2 + 1,5sinсos] – 0,5sin2 – 0,5sin2};

интервал      – 

M1() = M()/(PRтр.н/2sin) = [1/(2sin)]{(1/)[(0,5 +

+ sin2 + 1,5sinсos] – 0,5sin2 – sinsin + 0,5sin2}.

Графики, иллюстрирующие изменение изгибающего момента, приведены на рис. 13, 14. Из них следует, что оптимальным с точки зрения минимизации напряжений, возникающих при сжатии плашкой трубы и действии распределенной нагрузки, является значение угла охвата , близкое к 90. Достигнуть такой величины по конструктивным соображениям невозможно, поэтому в качестве максимального значения следует принимать  = 80  85.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5288
Авторов
на СтудИзбе
417
Средний доход
с одного платного файла
Обучение Подробнее