86182 (Интерполирование функций), страница 2

2016-07-29СтудИзба

Описание файла

Документ из архива "Интерполирование функций", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "контрольные работы и аттестации", в предмете "математика" в общих файлах.

Онлайн просмотр документа "86182"

Текст 2 страницы из документа "86182"

Вторая формула Ньютона применяется для интерполирования назад и экстраполирования вперед, т.е. в конце таблицы конечных разностей. При этом значение аргумента x должно находиться в интервале [xn-1, xn], причем за xn может приниматься любой узел интерполирования .

Одно из важнейших свойств конечных разностей заключается в следующем. Если конечные разности i–го порядка (i < n) постоянны, то функция представляет собой полином i–й степени. Следовательно, формула Ньютона должна быть не выше i-й степени. При использовании ЭВМ вычисление конечных разностей завершается при выполнении условий

где L - число значащих цифр после запятой в представлении значений функции.

Необходимо отметить, что формулы Ньютона являются видоизменениями формулы Лагранжа. Однако в формуле Лагранжа нельзя пренебречь ни одним из слагаемых, так как все они равноправны и представляют многочлены n-й степени. В формулы Ньютона в качестве слагаемых входят многочлены повышающихся степеней, коэффициентами при которых служат конечные разности, разделенные на факториалы. Конечные разности, как правило, быстро уменьшаются, что позволяет в формулах Ньютона пренебречь слагаемыми, коэффициенты при которых становятся малыми. Это обеспечивает вычисление промежуточных значений функции достаточно точно с помощью простых интерполяционных формул.





4. Формула Ньютона с разделенными разностями

Первая и вторая формулы Ньютона предполагают, что узлы интерполирования являются равноотстоящими. Однако, в общем случае функция f(x) может быть задана таблицей, в которой узлы находятся на произвольном расстоянии друг от друга , где значения hi (i = ) являются различными.

При таких условиях первая и вторая интерполяционные формулы Ньютона неприменимы. В данном случае, для решения задачи интерполяции применяются не конечные, а разделенные разности.

Разделенная разность первого порядка определяется:

Для вычисления разделенных разностей высших порядков используется формула:

Разделенные разности удобно представлять диагональной таблицей, вид которой для n = 4 соответствует табл. 2.

Таблица 2

Интерполяционный многочлен Ньютона, использующий разделенные разности, имеет вид:

где , Пk(x) = 1.

Представленная формула позволяет повышать точность вычислений постепенно, добавляя разделенные разности более высоких порядков. Следует отметить, что при этом все полученные результаты сохраняются, т.е. не вычисляются заново, а только наращиваются. Это следует из соотношения

Оценка погрешности интерполирования выполняется по формуле





5. Интерполяция сплайнами

Пусть задана таблица значений функции f(xi) = yi ( ), в которой они расположены по возрастанию значений аргумента: x0 < x1 < … < xn. Чтобы построить кубический сплайн, требуется определить коэффициенты ai0, ai1, ai2, ai3, которые задают интерполяционный кубический многочлен

на каждом интервале интерполирования [xi-1, xi], .

Таким образом, необходимо определить 4n коэффициентов aij ( , ), для чего требуется 4n уравнений. Необходимые уравнения определяются следующими условиями.

1. Условия непрерывности функции:

2. Условия непрерывности 1-х и 2-х производных функции:

3. Граничные условия:

Часто используются граничные условия вида Получаемый при этом сплайн называется естественным кубическим сплайном.

Задача определения кубического сплайна существенно упрощается при использовании многочлена Эрмита. Кубический многочлен Эрмита на интервале [xi-1, xi] определяется с помощью значений функции yi-1, yi и ее производных yi-1, yi. Так как значения производных в общем случае могут быть неизвестны, обозначим их как yi-1 = Si-1; yi = Si. При построении сплайна переменные Si называются наклонами сплайна в соответствующих точках xi.

Запишем многочлен Эрмита для интервала [xi-1, xi], где hi = xi - xi-1:

При таком выборе кубического многочлена автоматически выполняются условия непрерывности функции и ее первых производных:

Чтобы определить сплайн, нужно задать условия непрерывности второй производной:

Для записи этих условий в развернутом виде определим кубический многочлен Эрмита на интервале [xi, xi+1], где hi+1 = xi+1 - xi:

Определим вторые производные многочленов Qi(x) и Qi+1(x) в точке x = xi:

(4)

(5)

Отсюда условие непрерывности вторых производных имеет вид:

(6)

Это условие порождает систему линейных уравнений относительно наклонов сплайна Si, которая содержит n - 1 уравнение и n + 1 переменную. Чтобы определить два недостающих уравнения используются граничные условия. Например, для естественного кубического сплайна:

Указанные граничные условия могут быть получены из уравнения (5) для i = 0 и из уравнения (4) для i = n соответственно. В развернутом виде:





(7)

Решение системы линейных уравнений, образованной условиями (6) и (7), позволяет вычислить наклоны сплайна Si (i = ) и определить кубический сплайн путем записи многочлена Эрмита для каждого интервала [xi-1, xi], i = .





Заключение

В вычислительной математике существенную роль играет интерполяция функций, т.е. построение по заданной функции другой (как правило, более простой), значения которой совпадают со значениями заданной функции в некотором числе точек. Причем интерполяция имеет как практическое, так и теоретическое значение. На практике часто возникает задача о восстановлении непрерывной функции по ее табличным значениям, например полученным в ходе некоторого эксперимента. Для вычисления многих функций оказывается эффективно приблизить их полиномами или дробно-рациональными функциями. Теория интерполирования используется при построении и исследовании квадратурных формул для численного интегрирования, для получения методов решения дифференциальных и интегральных уравнений.





Список литературы

1. В.В. Иванов. Методы вычислений на ЭВМ. Справочное пособие. Изд-во "Наукова думка". Киев. 1986.

2. Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков. Численные методы. Изд-во "Лаборатория базовых знаний". 2003.

3. И.С. Березин, Н.П. Жидков. Методы вычислений. Изд. ФизМатЛит. Москва. 1962.

4. К. Де Бор. Практическое руководство по сплайнам. Изд-во "Радио и связь". Москва. 1985.

5. Дж. Форсайт, М.Мальком, К. Моулер. Машинные методы математических вычислений. Изд-во "Мир". Москва. 1980.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5288
Авторов
на СтудИзбе
417
Средний доход
с одного платного файла
Обучение Подробнее