85990 (Математическая логика), страница 3

2016-07-29СтудИзба

Описание файла

Документ из архива "Математическая логика", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "контрольные работы и аттестации", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85990"

Текст 3 страницы из документа "85990"

Аксиомы: .

Импликация обладает свойством коммутативности в виде:

;

ассоциативность не выполняется.

Формулы преобразования функций ¯ через →:

.

2.5.4 Функция Шеффера

Аксиомы: .

Свойство коммутативности верно только для двух переменных:

ассоциативность не выполняется.

Формулы преобразования:

3. Системы функций алгебры логики

3.1 Функциональная полнота

Алгебра над множеством логических функций с двумя бинарными операциями и называется алгеброй Жегалкина. В алгебре Жегалкина выполняются следующие соотношения:

а также соотношения булевой алгебры, относящиеся только к конъюнкции и константам (с конъюнкцией).

Отрицание и дизъюнкция в этой алгебре выражаются следующим образом:

Формулы, содержащие знаки называют полиномами.

Полином вида: , где есть либо 1, либо переменная, либо конъюнкция различных переменных, при , называется полиномом Жегалкина.

Теорема.

Любая булева функция может быть представлена полиномом Жегалки- на

где ki – коэффициенты, принимающие значения 0 или 1: .

3.2 Класс линейных функций (К Л)

Булева функция называется линейной, если она представима полиномом первой степени

.

Количество линейных функций равно , где п – число перемен-ных.

Для п = 2 их 8:

3.3 Класс функций, сохраняющих ноль (К 0)

Если булева функция на нулевом наборе переменных равна нулю, то говорят, что функция сохраняет ноль:

3.4 Класс функций, сохраняющих единицу (К 1)

Если булева функция на единичном наборе переменных равна единице, то говорят, что функция сохраняет единицу:

3.5 Класс монотонных функций (К м)

Булева функция называется монотонной, если для любых двоичных наборов из того, что , выполняется неравенство: .

3.6 Класс самодвойственных функций (К с)

Булева функция называется двойственной для функции , если таблицу истинности для функции можно получить из таблицы для функции f, заменив в значениях аргумента функции 0 на 1 и 1 на 0, т.е. имеет место равенство

Например, конъюнкция и дизъюнкция двойственны друг другу, отрицание двойственно самому себе.

Функция, совпадающая со своей двойственной, называется самодвойственной.

Самодвойственная функция на противоположных наборах и принимает противоположные значения. Противоположными являются наборы, сумма десятичных эквивалентов которых равна 2n – 1, где п – количество переменных, от которых зависит функция.

Распределение булевых функций двух переменных по классам

Функция

К л

К 0

К 1

К м

К с

f 0

*

*

*

f 1

*

*

*

f 2

*

f 3

*

*

*

*

*

f 4

*

f 5

*

*

*

*

*

f 6

*

*

f 7

*

*

*

f 8

-

-

-

-

-

f 9

*

*

f 10

*

*

f 11

*

f 12

*

*

f 13

*

f 14

-

-

-

-

-

f 15

*

*

*

3.7 Принцип двойственности

Если в формуле алгебры логики F заменить знаки всех логических функций на знаки двойственных функций, то получится двойственная формула F *, реализующая функцию, двойственную той, которая реализуется формулой F. При этом, если формулы равны F 1 = F 2, то верно равенство двойственных формул , которое называется двойственным предыдущему. Например, равенства, являющиеся двойственными друг другу:

и ;

и ;

и ;

и ;

и .

3.8 Полнота функций алгебры логики

Суперпозицией функций называется функция f, полученная с помощью подстановок этих функций друг в друга и переименования переменных, а формулой называется выражение, описывающее эту суперпозицию.

Например, суперпозицию функций f1, f2, f3 можно задать формулой

.

Если f1 обозначает дизъюнкцию, f2 – конъюнкцию, а f3 – сложение по mod 2, то последняя формула примет вид:

.

Если рассматривается произвольная система функций, то возникает вопрос: всякая ли логическая функция из этой системы представима формулой, содержащей символы только этой системы функций.

Система функций алгебры логики (ФАЛ) называется функционально полной, если любая функция алгебры логики может быть реализована формулой, содержащей лишь символы функций из этой системы ФАЛ, т.е. является суперпозицией функций из этой системы.

Следовательно, система функций должна быть функционально полной.

3.9 Теорема Поста – Яблонского (критерий функциональной полноты)

Для того, чтобы система ФАЛ была полной необходимо и достаточно, чтобы она содержала функцию:

1) не сохраняющую ноль;

2) не сохраняющую единицу;

3) нелинейную;

4) немонотонную;

5) несамодвойственную.

Примерами функционально полных систем являются, например, системы:

.

Все названные выше классы функций обладают свойством: любая ФАЛ, полученная с помощью операции суперпозиции и подстановки из функций одного класса, обязательно будет принадлежать этому же классу.

Полная система ФАЛ называется базисом,если теряется полнота Ф при удалении хотя бы одной функции системы.

К базису относятся системы функций:

базис 1: ;

базис 2: ;

базис 3: ;

базис 4: функция Шеффера: x1 | x2;

базис 5: функция Пирса (Вебба): x1x2.

Базис 1 – избыточный, базисы 4 и 5 – минимальные (удаление хотя бы одной функции превращает систему ФАЛ в неполную).

При исследовании полноты систем функций удобно пользоваться таблицей, которую называют критериальной. Эта таблица имеет пять столбцов, каждый из которых соответствует одному из пяти классов, а строки таблицы соответствуют функциям исследуемой системы. На пересечении строки таблицы, соответствующей функции f, и столбца, соответствующего классу К, ставится знак плюс, если функция , и минус, если . Система функций полна тогда и только тогда, когда в каждом столбце содержится хотя бы один знак минус.

Пример.

Является ли система булевых функций полной? Если является, то выписать все возможные базисы.

Рассмотрим функцию .

1. Исследуем ее принадлежность к классу К0:

.

Следовательно, .

2. Исследуем принадлежность функции к классу К1:

.

Следовательно, .

3. Установим, является ли функция f1 линейной. Используем метод неопределенных коэффициентов. Предположим, что функция линейная и, следовательно, представима в виде полинома Жегалкина первой степени:

.

Найдем коэффициенты , исходя из предположения линейности этой функции. Зафиксируем набор 000:

, , .

Следовательно, .

Зафиксируем набор 100:

,

,

.

Следовательно, .

Фиксируем набор 010:

,

Фиксируем набор 001:

.

Следовательно, функция (по нашему предположению) может быть представлена полиномом первой степени вида:

.

Если функция линейная, то полученный полином, путем тождественных преобразований, должен привестись к виду заданной функции. Ясно, что полученный полином не приводится к исходной функции. Следовательно, .

4. Исследуем заданную функцию на самодвойственность.

Функция самодвойственная, если на любой паре противоположных наборов (наборов, сумма десятичных эквивалентов которых равна , где п – количество переменных функции) функция принимает противоположные значения.

Построим таблицу: ; вычислим значения функции на оставшихся наборах:

:

(000)

0

(001)

1

(010)

2

(011)

3

(100)

4

(101)

5

(110)

6

(111)

7

0

1

0

1

0

1

1

0

На наборах 0 и 7, 1 и 6 функция принимает одинаковые значения. Следовательно .

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5193
Авторов
на СтудИзбе
434
Средний доход
с одного платного файла
Обучение Подробнее