Ответы 190 страниц, страница 5

2020-08-19СтудИзба

Описание файла

Документ из архива "Ответы 190 страниц", который расположен в категории "". Всё это находится в предмете "параллельная обработка данных" из 9 семестр (1 семестр магистратуры), которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Онлайн просмотр документа "Ответы 190 страниц"

Текст 5 страницы из документа "Ответы 190 страниц"

1986 г. - начало выпуска . в Вильнюсе СМ 1700, совместимой с VAX-11 фирмы Digital Equipment Corp. (Н.Л.Прохоров, Г.А.Егоров, В.И.Фролов, Л.Н.Столяр).

1986 г. - выпуск комплексов КУВТ-86, состоящих из учительской машины ДВК-2 и 12 ученических машин БК-0010Ш, объединенных в сеть.

1986 г. - на заводе ВЭМ в Пензе передана в производство ЭВМ ЕС 1766 (до 256 процессоров).

1986 г. - выпуск 8-разрядной персональной ЭВМ Агат-7 (КУВТ "Агат") с открытой архитектурой. Позднее начат выпуск модели Агат-9, программно совместимой с ПЭВМ Apple II+, Правец-8 и Цзыньцзы.

1987 г.- выпуск комплекта учебной вычислительной техники КУВТ “Корвет”, включающего рабочее место учителя, 12 рабочих мест учащихся, объединенных в локальную сеть.

1987 г. - государственная комиссия приняла опытный образец нового школьного комплекса учебной вычислительной техники УКНЦ ("Электроника МС 0202, -05115"), который включал в себя рабочее место преподавателя и 12 рабочих мест учащихся, объединенных в локальную сеть.

1987 г. выпущена ПЭВМ "Москва", являющаяся наиболее полноценным в то время ПК. В качестве прототипа был взят ZX Spectrum. Односременно с ним выпущена "Балтика", оказавшаяся менее совместимой с ZX Spectrum из-за оригинальной схемотехники и повышенной тактовой частоты процессора (4 МГц).

1990 г. - выпущена модификация бытового компьютера БК0011М.

1991 г. - создан опытный образец ЭВМ "ЛОКОН 9В51" (проект "ЛОКОН" -- локально-связанная машина). ЭВМ построена в архитектуре CLIP/ CAM (клеточно-автоматные машины), в основу проекта были положены принципы параллельной обработки информации с расширяемой архитектурой. Главный конструктор и научный руководитель проекта - Бронников В. А.

1993 г. - в России (Москва) начался выпуск персональных компьютеров PS/1.

1994 г. - "Эльбрус-3" - LSI, ECL БИС, 16 процессоров, быстродействие в два раза выше, чем у CRAY-YMP, был изготовлен, но в серию запущен не был (на конечной стадии в работе участвовало дочернее предприятие Института - Московский центр SPARC-технологий).

1996 г. - Завершено изготовление опытного образца ЭВМ "Эльбрус-90 Микро"

Вычислители фон-Нейманновской архитектуры. Конвейерная обработка данных и команд. Архитектура памяти.

Принципы фон-Нейманновской архитектуры ЭВМ.

В основу построения подавляющего большинства компьютеров положены следующие общие принципы, сформулированные в 1945 г. американским ученым Джоном фон Нейманом.

1. Принцип программного управления. Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

Выборка программы из памяти осуществляется с помощью счетчика команд. Этот регистр процессора последовательно увеличивает хранимый в нем адрес очередной команды на длину команды.

А так как команды программы расположены в памяти друг за другом, то тем самым организуется выборка цепочки команд из последовательно расположенных ячеек памяти.

Если же нужно после выполнения команды перейти не к следующей, а к какой-то другой, используются команды условного или безусловного переходов, которые заносят в счетчик команд номер ячейки памяти, содержащей следующую команду. Выборка команд из памяти прекращается после достижения и выполнения команды “стоп”.

Таким образом, процессор исполняет программу автоматически, без вмешательства человека.

2. Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Поэтому компьютер не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными. Это открывает целый ряд возможностей. Например, программа в процессе своего выполнения также может подвергаться переработке, что позволяет задавать в самой программе правила получения некоторых ее частей (так в программе организуется выполнение циклов и подпрограмм). Более того, команды одной программы могут быть получены как результаты исполнения другой программы. На этом принципе основаны методы трансляции — перевода текста программы с языка программирования высокого уровня на язык конкретной машины.

3. Принцип адресности. Структурно основная память состоит из перенумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было впоследствии обращаться или менять их в процессе выполнения программ с использованием присвоенных имен.

Компьютеры, построенные на этих принципах, относятся к типу фон-неймановских. Но существуют компьютеры, принципиально отличающиеся от фон-неймановских. Для них, например, может не выполняться принцип программного управления, т.е. они могут работать без “счетчика команд”, указывающего текущую выполняемую команду программы. Для обращения к какой-либо переменной, хранящейся в памяти, этим компьютерам не обязательно давать ей имя. Такие компьютеры называются не-фон-неймановскими.

Конвейерная обработка данных.

Основу конвейерной обработки составляет раздельное выполнение некоторой операции в несколько этапов (за несколько ступеней) с передачей данных одного этапа следующему. Производительность при этом возрастает благодаря тому, что одновременно на различных ступенях конвейера выполняются несколько операций. Конвейеризация эффективна только тогда, когда загрузка конвейера близка к полной, а скорость подачи новых операндов соответствует максимальной производительности конвейера. Если происходит задержка, то параллельно будет выполняться меньше операций и суммарная производительность снизится. Векторные операции обеспечивают идеальную возможность полной загрузки вычислительного конвейера.

При выполнении векторной команды одна и та же операция применяется ко всем элементам вектора (или чаще всего к соответствующим элементам пары векторов). Для настройки конвейера на выполнение конкретной операции может потребоваться некоторое установочное время, однако затем операнды могут поступать в конвейер с максимальной скоростью, допускаемой возможностями памяти. При этом не возникает пауз ни в связи с выборкой новой команды, ни в связи с определением ветви вычислений при условном переходе. Таким образом, главный принцип вычислений на векторной машине состоит в выполнении некоторой элементарной операции или комбинации из нескольких элементарных операций, которые должны повторно применяться к некоторому блоку данных. Таким операциям в исходной программе соответствуют небольшие компактные циклы.

Принцип конвейерной обработки информации нашел широкое применение в вычислительной технике. В первую очередь это относится к конвейеру команд. Практически все современные ЭВМ используют этот принцип. Вместе с тем во многих вычислительных системах наряду с конвейером команд используется и конвейер данных. Сочетание этих двух конвейеров дает возможность достигнуть очень высокой производительности систем на определенных классах задач, особенно если при этом используется несколько конвейерных процессоров, способных работать одновременно и независимо друг от друга. Именно так и построены самые высокопроизводительные системы. Целесообразнее всего рассмотреть принцип конвейерной обработки на примере некоторых, наиболее представительных систем.

К числу ЭВМ, в которых широкое применение нашел конвейер команд, относится одна из лучших свое время машин БЭСМ-6. Она была в течение многих лет самой быстродействующей в стране благодаря целому ряду интересных решений, в том числе и конвейеру команд. Последний обеспечивался использованием восьми независимых модулей ОЗУ, работающих в системе чередования адресов, и большого числа быстрых регистров, предназначенных также и для буферизации командной информации. Это позволило получить на БЭСМ-6 производительность 1 млн. операций в секунду.

Определенный интерес представляет построение систем IВМ 360/91, а также более поздней и более современной IВМ 360/195. Пять основных устройств системы: ОЗУ, управления памятью с буферным ОЗУ, процессор команд, операционные устройства для выполнения операций с плавающей запятой, с фиксированной запятой и десятичной арифметики работают одновременно и независимо друг от друга. Оперативное ЗУ построено по многомодульному принципу (до 32 модулей), устройство управления памятью работает по принципу конвейера и обеспечивает 8- или 16-кратное чередование адресов при обращении процессора и каналов ввода – вывода информации к ОЗУ.

Кроме конвейера команд в системах IВМ 360/91 и IВМ 370/195 в обоих ОУ используется также и конвейерная обработка данных. Однако в системе 360/195 конвейер получается довольно внушительный: в каждом цикле осуществляется выборка до 8 команд, расшифровка 16 команд, до 3 операций над адресами и до 3 процессорных операций. Всего в системе одновременно может обрабатываться до 50 команд.

Существенно более полно используется принцип магистральной обработки в системе STAR-100, разработанной фирмой СDС в 1973 г. Надо сказать, что фирма СDС в большинстве разрабатываемых и выпускаемых машин и систем использует принцип конвейерном обработки для повышения производительности, однако раньше использовался только командный конвейер, а в системе STAR-100 – оба типа конвейера. Система содержит три конвейерных процессора (рис. 3.1): ППЗ – процессор, содержащий конвейерные устройства сложения и умножения с плавающей запятой; ППФЗ – процессор, содержащий конвейерное устройство сложения с плавающей запятой, конвейерное многоцелевое устройство, выполняющее умножение с фиксированной запятой, деление и извлечение квадратного корня; СП – специальный конвейерный 16-разрядный процессор, выполняющий операции с фиксированной запятой и ряд логических операций.

Конвейерные процессоры оперируют с 64- или 32-разрядными числами и каждые 40 не выдают результаты в блок управления потоками данных и буферами. Оперативное ЗУ построено по модульному принципу (32-модуля памяти) и работает с чередованием адресов под управлением устройства УП (управление памятью). Каждый малый цикл обращения к памяти – 40 нc. (Полный цикл ОЗУ–1,28 мкс, т. е. 40X32 нc.)

Конвейерный сумматор с плавающей запятой состоит из четырех сегментов – специализированных операционных устройств (см. рис. 1.2, а). Продолжительность цикла каждого сегмента составляет 40 нс; таким образом, время выполнения операции сложения с плавающей запятой равно 160 нс.

Конвейерный умножитель включает в себя 8 сегментов, поэтому время выполнения операции умножения составляет 320 нс. Но при загрузке конвейерных процессоров длинной последовательностью операндов, над которыми производится одна и та же операция, результат выдается каждые 40 нс. Учитывая, что каждый из двух основных процессоров может выдавать по два 32-разрядных результата, нетрудно подсчитать, что система STAR-100 может в пределе выполнять до 100 млн. операций в секунду.

Устройства конвейерной обработки далеко не всегда выполняют с жесткой настройкой на одну определенную операцию. Чаще их делают многоцелевыми, вводя в конвейер сегменты, необходимые для реализации полного набора операций, в процессе выполнения которых весь тракт настраивается соответствующим образом. На рис. 3.2 представлена структура системы АSС фирмы «Техас Инструментс» и показано, какие сегменты универсальной цепочки работают при различных операциях.

Одной из наиболее высокопроизводительных вычислительных систем в мире общепризнанно считается система CRAY, созданная в 1976 г. В этой системе конвейерный принцип обработки используется в максимальной степени: имеется и конвейер команд, и конвейер арифметических и логических операций. Кроме того, в системе широко применяется совмещенная обработка информации несколькими устройствами. Все это позволило при решении научных задач достигнуть чрезвычайно высокой производительности – до 250 млн. операций в секунду

Система CRAY (рис. 2.3) состоит из четырех секций: функциональных устройств, регистров, управления программой, памяти и ввода – вывода. В системе 12 функциональных устройств, работающих в режиме конвейера, разбитых на 4 группы: адресную, скалярную, операций с плавающей запятой и векторную. Число сегментов в каждом функциональном устройстве (указано в скобках на схеме) сравнительно невелико, оно зависит от сложности операций и колеблется в пределах от 1 до 14 (вычисление обратной величины). Такое сравнительно небольшое число сегментов в каждом магистральном устройстве имеет определенные преимущества – они сравнительно быстро заполняются. Длительность цикла каждого сегмента составляет 12,5 нс: это значит, что каждые 12,5 нс любое функциональное устройство может выдавать результаты.

Оперативная память системы, выполненная на интегральных схемах, имеет емкость 1 млн. слов (позже была увеличена до 4 млн.) и организована в виде 16 блоков памяти с независимым управлением емкостью по 64 кслов. Каждый блок включает в себя 72 модуля, причем модуль содержит один разряд всех 64 кслов. Система работает с 64-разрядными словами, 8 разрядов используется для коррекции одиночных и обнаружения двойных ошибок, что обеспечивает высокую надежность хранения информации. Независимые блоки дают возможность организовать 16-кратное чередование адресов. Цикл обращения к памяти – 50 нс.

Существенную роль в достижении столь высокой производительности играют быстрые регистры. Они разделены на 3 группы: адресные – А-регистры, скалярные – S-регистры и векторные – V-регистры. Адресные регистры 24-разрядные, их всего восемь; 64-разрядных 5-регистров также восемь и восемь 64-элементных V-регистров, причем каждый элемент вектора содержит 64-разрядное слово. Время обращения к регистру всего лишь 6 нc. В системе имеется еще две группы промежуточных регистров (между ОЗУ и А-, S- и V-регистрами): 24-разрядные В-регистры и 64-разрядные Т-регистры, на рисунке не показанные. Все эти регистры позволяют конвейерным устройствам работать с максимальной скоростью без непосредственного обращения к ОЗУ: все операнды получаются из регистров и результаты отправляются также в регистры. Благодаря регистрам конвейерные устройства связываются в цепочки, т. е, поток результатов засылаемых в векторный регистр одним устройством, одновременно служит входным потоком операндов для другого устройства; исключаются промежуточные обращения к памяти. Это является еще одной отличительной особенностью системы CRAY, повышающей ее производительность.

Состав операций универсальный, только вместо деления используется операция вычисления обратной величины. Общее число операций 128. Команды двух форматов – 16 и 32 разряда. Арифметические и логические команды имеют 16-разрядный формат 7 разрядов – код операции и по 3 разряда для адресов регистров операндов и результата, причем 6 разрядов адресов регистров операндов в совокупности с дополнительными 16 разрядами используются для обращения к основной памяти и командам перехода.

Зацепление конвейеров.

По версии Томилина

Сколько здесь можно разогнать? Конечно, в основном разгонка идёт здесь. Частота у Cray была 80 МГц, это приблизительно 80 миллионов операций в секунду с плавающей запятой при выполнении векторных операций. Сколько операций можно запустить параллельно? Одна операция требует 3 векторных регистра, всего их 8, значит 2 операции. Таким образом, до 160 MFlops можно было раскрутить Cray-1. Это, конечно, очень серьёзное было приобретение в мировом вычислительном хозяйстве, и потому и названа была «супермашина».

На самом деле можно было больше. И это «больше» достигалось вот каким способом:

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
420
Средний доход
с одного платного файла
Обучение Подробнее