47549 (Машина Тьюринга), страница 2

2016-07-29СтудИзба

Описание файла

Документ из архива "Машина Тьюринга", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "контрольные работы и аттестации", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "47549"

Текст 2 страницы из документа "47549"

Как ни странно, можно доказать, что некоторые NP-задачи настолько же трудны, что и любая задача этого класса. Такие задачи называются NP-полными. То есть, если такая задача решается за полиномиальное время, то P=NP.

Таким образом, для программиста NP-полнота означает полный перебор, причем сложность этого перебора будет экспоненциальной или факториальной. Но следует понимать, что не всякий полный перебор имеет такую сложность. Например, если решать задачи из предыдущего выпуска полным перебором, то сложность полученных алгоритмов будет полиномиальной - O(n2) для задачи про подпоследовательности и O(n6) для задачи про подматрицы.

Наконец, существует класс задач EXPTIME. Эти задачи решаются за экспоненциальное время. В настоящее время можно доказать, что EXPTIME-полные задачи невозможно решить за детерминированное полиномиальное время. Кроме того, доказано, что P<>EXPTIME.


3. Машина Тьюринга и алгоритмически неразрешимые проблемы

За время своего существования человечество придумало множество алгоритмов для решения разнообразных практических и научных проблем. Зададимся вопросом – а существуют ли какие-нибудь проблемы, для которых невозможно придумать алгоритмы их решения?

Утверждение о существовании алгоритмически неразрешимых проблем является весьма сильным – мы констатируем, что мы не только сейчас на знаем соответствующего алгоритма, но мы не можем принципиально никогда его найти.

Успехи математики к концу XIX века привели к формированию мнения, которое выразил Д. Гильберт – "в математике не может быть неразрешимых проблем", в связи с этим формулировка проблем Гильбертом на конгрессе 1900 года в Париже была руководством к действию, констатацией отсутствия решений в данный момент.

Первой фундаментальной теоретической работой, связанной с доказательством алгоритмической неразрешимости, была работа Курта Гёделя – его известная теорема о неполноте символических логик. Это была строго формулированная математическая проблема, для которой не существует решающего ее алгоритма. Усилиями различных исследователей список алгоритмически неразрешимых проблем был значительно расширен. Сегодня принято при доказательстве алгоритмической неразрешимости некоторой задачи сводить ее к ставшей классической задаче – "задаче останова".

Имеет место быть следующая теорема: не существует алгоритма (машины Тьюринга), позволяющего по описанию произвольного алгоритма и его исходных данных (и алгоритм и данные заданы символами на ленте машины Тьюринга) определить, останавливается ли этот алгоритм на этих данных или работает бесконечно.

Таким образом, фундаментально алгоритмическая неразрешимость связана с бесконечностью выполняемых алгоритмом действий, т.е. невозможностью предсказать, что для любых исходных данных решение будет получено за конечное количество шагов.

Тем не менее, можно попытаться сформулировать причины, ведущие к алгоритмической неразрешимости, эти причины достаточно условны, так как все они сводимы к проблеме останова, однако такой подход позволяет более глубоко понять природу алгоритмической неразрешимости:

а) Отсутствие общего метода решения задачи

Проблема 1: Распределение девяток в записи числа;

Определим функцию f(n) = i, где n – количество девяток подряд в десятичной записи числа, а i – номер самой левой девятки из n девяток подряд: =3,141592… f(1) = 5.

Задача состоит в вычислении функции f(n) для произвольно заданного n.

Поскольку число является иррациональным и трансцендентным, то мы не знаем никакой информации о распределении девяток (равно как и любых других цифр) в десятичной записи числа. Вычисление f(n) связано с вычислением последующих цифр в разложении, до тех пор, пока мы не обнаружим n девяток подряд, однако у нас нет общего метода вычисления f(n), поэтому для некоторых n вычисления могут продолжаться бесконечно – мы даже не знаем в принципе (по природе числа) существует ли решение для всех n.

Проблема 2: Вычисление совершенных чисел;

Совершенные числа – это числа, которые равны сумме своих делителей, например: 28 = 1+2+4+7+14.

Определим функцию S(n) = n-ое по счёту совершенное число и поставим задачу вычисления S(n) по произвольно заданному n. Нет общего метода вычисления совершенных чисел, мы даже не знаем, множество совершенных чисел конечно или счетно, поэтому наш алгоритм должен перебирать все числа подряд, проверяя их на совершенность. Отсутствие общего метода решения не позволяет ответить на вопрос о останове алгоритма. Если мы проверили М чисел при поиске n-ого совершенного числа – означает ли это, что его вообще не существует?

Проблема 3: Десятая проблема Гильберта;

Пусть задан многочлен n-ой степени с целыми коэффициентами – P, существует ли алгоритм, который определяет, имеет ли уравнение P=0 решение в целых числах?

Ю.В. Матиясевич показал, что такого алгоритма не существует, т.е. отсутствует общий метод определения целых корней уравнения P=0 по его целочисленным коэффициентам.

б) Информационная неопределенность задачи

Проблема 4: Позиционирование машины Поста на последний помеченный ящик;

Пусть на ленте машины Поста заданы наборы помеченных ящиков (кортежи) произвольной длины с произвольными расстояниями между кортежами и головка находится у самого левого помеченного ящика. Задача состоит установке головки на самый правый помеченный ящик последнего кортежа.

Попытка построения алгоритма, решающего эту задачу приводит к необходимости ответа на вопрос – когда после обнаружения конца кортежа мы сдвинулись вправо по пустым ящикам на М позиций и не обнаружили начало следующего кортежа – больше на ленте кортежей нет или они есть где-то правее? Информационная неопределенность задачи состоит в отсутствии информации либо о количестве кортежей на ленте, либо о максимальном расстоянии между кортежами – при наличии такой информации (при разрешении информационной неопределенности) задача становится алгоритмически разрешимой.

в) Логическая неразрешимость (в смысле теоремы Гёделя о неполноте)

Проблема 5: Проблема "останова" (см. теорема);

Проблема 6: Проблема эквивалентности алгоритмов;

По двум произвольным заданным алгоритмам (например, по двум машинам Тьюринга) определить, будут ли они выдавать одинаковые выходные результаты на любых исходных данных.

Проблема 7: Проблема тотальности;

По произвольному заданному алгоритму определить, будет ли он останавливаться на всех возможных наборах исходных данных. Другая формулировка этой задачи – является ли частичный алгоритм Р всюду определённым?


Заключение

Теория сложности также классифицирует и сложность самих проблем, а не только сложность конкретных алгоритмов решения проблемы. Теория рассматривает минимальное время и объем памяти, необходимые для решения самого трудного варианта проблемы на теоретическом компьютере, известном как машина Тьюринга. Машина Тьюринга представляет собой конечный автомат с бесконечной лентой памяти для чтения записи и является реалистичной моделью вычислений.

Задачи можно разбить на классы в соответствии со сложностью их решения. Вот важнейшие из них и предполагаемые соотношения между ними:

P<=NP<=EXPTIME

Находящийся слева класс P включает все задачи, которые можно решить за полиномиальное время. В класс NP входят все задачи, которые можно решить за полиномиальное время только на недетерминированной машине Тьюринга (это вариант обычной машины Тьюринга, которая может делать предположения). Такая машина предполагает решение задачи – либо “удачно угадывая”, либо перебирая все предположения параллельно – и проверяет свое предположение за полиномиальное время.

Класс NP включает в себя класс P, поскольку любую задачу, решаемую за полиномиальное время на детерминированной (обычной) машине Тьюринга, можно решить и на недетерминированной за полиномиальное время, просто этап предположения опускается.

Если все задачи класса NP решаются за полиномиальное время и на детерминированной машине, то P=NP. Тем не менее, никем не доказано, что P<>NP (или P=NP). Однако, большинство специалистов, занимающихся теорией сложности, убеждены, что это классы неравны.

Как ни странно, можно доказать, что некоторые NP-задачи настолько же трудны, что и любая задача этого класса. Такие задачи называются NP-полными. То есть, если такая задача решается за полиномиальное время, то P=NP.


Список литературы

1. Рощин А.Г., Половов Р.М. Теория автоматов. Часть I. Тексты лекций - Москва: МГТУ ГА, 2001. - 76 с.

2. Фалевич Б.Я. Теория алгоритмов. – М.: ИНФРА-М, 2006. – с.324.

3. Фалина Н.М. Машина Тьюринга // Информатика. - №26. – 2005. – с.12-15

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее