Билеты (Graur) (Экзамен), страница 9

2019-05-08СтудИзба

Описание файла

Файл "Билеты (Graur)" внутри архива находится в следующих папках: Экзамен, Билеты, Билеты (ответы). Документ из архива "Экзамен", который расположен в категории "". Всё это находится в предмете "операционные системы" из 3 семестр, которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Онлайн просмотр документа "Билеты (Graur)"

Текст 9 страницы из документа "Билеты (Graur)"

Будем использовать термины 0й процесс, 1й процесс, 125й процесс, это означает, что речь идет о процессах с PID = 0, 1, 125. 0й процесс в системе ассоциируется с работой ядра Unix. С точки зрения организации данных PID – номер строки в таблице, в которой размещена запись о процессе.

Контекст процесса

Содержимое записи таблицы процессов позволяет получить контекст процесса (часть данных контекста размещается непосредственно в записи таблицы процессов, на оставшуюся часть контекста имеются прямые или косвенные ссылки, также размещенные в записи таблицы процессов).

С точки зрения логической структуры контекст процесса Unix состоит из:

  • пользовательской составляющей или тела процесса (иногда используется пользовательский контекст)

  • аппаратной составляющей (иногда используется аппаратный контекст)

  • системной составляющей ОС Unix (иногда – системный контекст)

Иногда два последних компонента объединяют, в этом случае используется термин общесистемная составляющая контекста.

Тело процесса состоит из сегмента кода и сегмента данных.

Сегмент кода содержит машинные команды и неизменяемые константы соответствующей процессу программы.

Сегмент данных – содержит данные, динамически изменяемые в ходе выполнения кода процесса. Сегмент данных содержит область статических переменных, область разделяемой с другими процессами памяти, а также область стека (обычно эта область служит основой для организации автоматических переменных, передачи параметров в функции, организацию динамической памяти).

Некоторые современные ОС имеют возможность разделения единого сегмента кода между разными процессами. Тем самым достигается экономия памяти в случаях одновременного выполнения идентичных процессов.

Например, при функционировании терминального класса одновременно могут быть сформированы несколько копий текстового редактора. В этом случае сегмент кода у всех процессов, соответствующих редакторам, будет единый, а сегменты данных будут у каждого процесса свои.

Следует отметить, что при использовании динамически загружаемых библиотек возможно разделение сегмента кода на неизменную часть, которая может разделяться между процессами и часть, соответствующую изменяемому в динамике коду подгружаемых программ.

Аппаратная составляющая содержит все регистры и аппаратные таблицы ЦП, используемые активным или исполняемым процессом (счетчик команд, регистр состояния процессора, аппарат виртуальной памяти, регистры общего назначения и т. д.).

Обращаем внимание, что аппаратная составляющая имеет смысл только для процессов, находящихся в состоянии выполнения. Для процессов, находящихся в других состояниях содержимое составляющей не определено.

Системная составляющая.

В системной составляющей контекста процесса содержатся различные атрибуты процесса, такие как:

  • идентификатор родительского процесса;

  • текущее состояние процесса;

  • приоритет процесса;

  • реальный идентификатор пользователя-владельца (идентификатор пользователя, сформировавшего процесс);

  • эффективный идентификатор пользователя-владельца (идентификатор пользователя, по которому определяются права доступа процесса к файловой системе);

  • реальный идентификатор группы, к которой принадлежит владелец (идентификатор группы к которой принадлежит пользователь, сформировавший процесс);

  • эффективный идентификатор группы, к которой принадлежит владелец (идентификатор группы «эффективного» пользователя, по которому определяются права доступа процесса к файловой системе);

  • список областей памяти;

  • таблица открытых файлов процесса;

  • информация о том, какая реакция установлена на тот или иной сигнал (аппарат сигналов позволяет передавать воздействия от ядра системы процессу и от процесса к процессу);

  • информация о сигналах, ожидающих доставки в данный процесс;

  • сохраненные значения аппаратной составляющей (когда выполнение процесса приостановлено).

Рассмотрим второе определение процесса Unix.

Процесс в ОС Unix – это объект, порожденный системным вызовом fork(). Данный системный вызов является единственным стандартным средством порождения процессов в системе Unix. Ниже рассмотрим возможности данного системного вызова подробнее.

Аппарат системных вызов в OC UNIX.

Привилегированный и обычный режим(есть набор инструкций, доступный только из привил.)Чтобы работать в с ресурсами ВС – переход в привел. Системные вызовы, предоставляемые ОС UNIX. К интересующим нас вызовам относятся вызовы

  • для создания процесса;

  • для организации ввода вывода;

  • для решения задач управления;

  • для операции координации процессов;

  • для установки параметров системы.

Отметим некоторые общие моменты, связанные с работой системных вызовов.

Большая часть системных вызовов определены как функции, возвращающие целое значение, при этом при нормальном завершении системный вызов возвращает 0, а при неудачном завершении -14. При этом код ошибки можно выяснить, анализируя значение внешней переменной errno, определенной в заголовочном файле <errno.h>.

В случае, если выполнение системного вызова прервано сигналом, поведение ОС зависит от конкретной реализации. Например, в BSD UNIX ядро автоматически перезапускает системный вызов после его прерывания сигналом, и таким образом, внешне никакого различия с нормальным выполнением системного вызова нет. Стандарт POSIX допускает и вариант, когда системный вызов не перезапускается, при этом системный вызов вернет –1, а в переменной errno устанавливается значение EINTR, сигнализирующее о данной ситуации.

БИЛЕТ 24

Базовые средства организации и управления процессами

Для порождения новых процессов в UNIX существует единая схема, с помощью которой создаются все процессы, существующие в работающем экземпляре ОС UNIX, за исключением первых двух процессов (0-го и 1-го).

Для создания нового процесса в операционной системе UNIX используется системный вызов fork(), в результате в таблицу процессов заносится новая запись, и порожденный процесс получает свой уникальный идентификатор. Для нового процесса создается контекст, большая часть содержимого которого идентична контексту родительского процесса, в частности, тело порожденного процесса содержит копии сегментов кода и данных его родителя. Сыновний процесс наследует от родительского процесса:

  • окружение - при формировании процесса ему передается некоторый набор параметров-переменных, используя которые, процесс может взаимодействовать с операционным окружением (интерпретатором команд и т.д.);

  • файлы, открытые в процессе-отце, за исключением тех, которым было запрещено передаваться процессам-потомкам с помощью задания специального параметра при открытии. (Речь идет о том, что в системе при открытии файла с файлом ассоциируется некоторый атрибут, который определяет правила передачи этого открытого файла сыновним процессам. По умолчанию открытые в «отце» файлы можно передавать «потомкам», но можно изменить значение этого параметра и блокировать передачу открытых в процессе-отце файлов.);

  • способы обработки сигналов;

  • разрешение переустановки эффективного идентификатора пользователя;

  • разделяемые ресурсы процесса-отца;

  • текущий рабочий каталог и домашний каталоги

  • и т.д.

По завершении системного вызова fork() каждый из процессов – родительский и порожденный – получив управление, продолжат выполнение с одной и той же инструкции одной и той же программы, а именно с той точки, где происходит возврат из системного вызова fork(). Вызов fork() в случае удачного завершения возвращает сыновнему процессу значение 0, а родительскому PID порожденного процесса. Это принципиально важно для различения сыновнего и родительского процессов, так как сегменты кода у них идентичны. Таким образом, у программиста имеется возможность разделить путь выполнения инструкций в этих процессах.

В случае неудачного завершения, т.е. если сыновний процесс не был порожден, системный вызов fork() возвращает –1, код ошибки устанавливается в переменной errno.

Пример.

Программа создает два процесса – процесс-предок распечатывает заглавные буквы, а процесс-потомок строчные.

int main(int argc, char **argv)

{

char ch, first, last;

int pid;

if((pid=fork())>0)

{

/*процесс-предок*/

first =’A’;

last =’Z’;

}

else

{

/*процесс-потомок*/

first =’a’;

last =’z’;

}

for (ch = first; ch <= last; ch++)

{

write(1,&ch,1);

}

_exit(0);

}

Механизм замены тела процесса.

Семейство системных вызовов exec() производит замену тела вызывающего процесса, после чего данный процесс начинает выполнять другую программу, передавая управление на точку ее входа. Возврат к первоначальной программе происходит только в случае ошибки при обращении к exec() , т.е. если фактической замены тела процесса не произошло.

Заметим, что выполнение “нового” тела происходит в рамках уже существующего процесса, т.е. после вызова exec() сохраняется идентификатор процесса, и идентификатор родительского процесса, таблица дескрипторов файлов, приоритет, и большая часть других атрибутов процесса. Фактически происходит замена сегмента кода и сегмента данных. Изменяются следующие атрибуты процесса:

  • режимы обработки сигналов: для сигналов, которые перехватывались, после замены тела процесса будет установлена обработка по умолчанию, т.к. в новой программе могут отсутствовать указанные функции-обработчики сигналов;

  • эффективные идентификаторы владельца и группы могут измениться, если для новой выполняемой программы установлен s-бит

  • перед началом выполнения новой программы могут быть закрыты некоторые файлы, ранее открытые в процессе. Это касается тех файлов, для которых при помощи системного вызова fcntl() был установлен флаг close-on-exec. Соответствующие файловые дескрипторы будут помечены как свободные.

Ниже представлены прототипы функций семейства exec():

#include <unistd.h>

int execl(const char *path, char *arg0,…);

int execlp(const char *file, char *arg0,…);

int execle(const char *path, char *arg0,…, const char **env);

int execv(const char *path, const char **arg);

int execvp(const char *file, const char **arg);

int execve(const char *path, const char **arg, const char **env);

Первый параметр во всех вызовах задает имя файла программы, подлежащей исполнению. Этот файл должен быть исполняемым файлом и пользователь-владелец процесса должен иметь право на исполнение данного файла. Для функций с суффиксом «p» в названии имя файла может быть кратким, при этом при поиске нужного файла будет использоваться переменная окружения PATH. Далее передаются аргументы командной строки для вновь запускаемой программы, которые отобразятся в ее массив argv – в виде списка аргументов переменной длины для функций с суффиксом «l» либо в виде вектора строк для функций с суффиксом «v». В любом случае, в списке аргументов должно присутствовать как минимум 2 аргумента: имя программы, которое отобразится в элемент argv[0], и значение NULL, завершающее список.

В функциях с суффиксом «e» имеется также дополнительный аргумент, описывающий переменные окружения для вновь запускаемой программы – это массив строк вида name=value, завершенный значением NULL.

Пример.

#include <unistd.h>

int main(int argc, char **argv)

{

/*тело программы*/

execl(“/bin/ls”,”ls”,”-l”,(char*)0);

/* или execlp(“ls”,”ls”, ”-l”,(char*)0);*/

printf(“это напечатается в случае неудачного обращения к предыдущей функции, к примеру, если не был найден файл ls \n”);

}

В данном случае второй параметр – вектор из указателей на параметры строки, которые будут переданы в вызываемую программу. Как и ранее первый указатель – имя программы, последний – нулевой указатель. Эти вызовы удобны, когда заранее неизвестно число аргументов вызываемой программы.

Чрезвычайно полезным является использование fork() совместно с системным вызовом exec(). Как отмечалось выше системный вызов exec() используется для запуска исполняемого файла в рамках существующего процесса. Ниже приведена общая схема использования связки fork() - exec().

Завершение процесса.

Для завершения выполнения процесса предназначен системный вызов _exit()

void _exit(int exitcode);

Кроме обращения к вызову _exit(), другими причинами завершения процесса могут быть:

  • оператора return, входящего в состав функции main()

  • получение некоторых сигналов (об этом речь пойдет чуть ниже)

В любом из этих случаев происходит следующее:

  • освобождаются сегмент кода и сегмент данных процесса

  • закрываются все открытые дескрипторы файлов

  • если у процесса имеются потомки, их предком назначается процесс с идентификатором 1

  • освобождается большая часть контекста процесса, однако сохраняется запись в таблице процессов и та часть контекста, в которой хранится статус завершения процесса и статистика его выполнения

  • процессу-предку завершаемого процесса посылается сигнал SIGCHLD

Состояние, в которое при этом переходит завершаемый процесс, в литературе часто называют состоянием “зомби”.

Процесс-предок имеет возможность получить информацию о завершении своего потомка. Для этого служит системный вызов wait():

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
420
Средний доход
с одного платного файла
Обучение Подробнее