Билеты (Graur) (Экзамен), страница 5

2019-05-08СтудИзба

Описание файла

Файл "Билеты (Graur)" внутри архива находится в следующих папках: Экзамен, Билеты, Билеты (ответы). Документ из архива "Экзамен", который расположен в категории "". Всё это находится в предмете "операционные системы" из 3 семестр, которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Онлайн просмотр документа "Билеты (Graur)"

Текст 5 страницы из документа "Билеты (Graur)"

Микропроцессоры SPARK используют такую архитектуру.

Два регистра: указатель текущего окна и указатель сохраненного окна. Возникает необходимость сохранения регистровых окон в память. Регистр SWP указывает на сохраненное окно.

Схема работы:

При обращении к функции: программно увеличиваем указатель на текущее окно на 1 по модулю N. Проверяется содержимое этого указателя и указателя на сохраненное окно. Если они совпадают, то происходит прерывание. Если же совпадения нет, то мы работаем с новым окном.

При выходе из функции: уменьшаем указатель текущего окна, сравниваем с указателем сохраненного окна.

5.2. Модель организации регистровой памяти в Intel Itanium.

Эта модель более совершенная. Регистры, доступные для программы, представляют собой множество из 128 регистров. Первые 32 из них – статические регистры (общие для всех случаев, они никак не меняются). После статических регистров располагаются динамические регистры, которые располагаются с 32 регистра до 127 (всего 96 регистров). Есть возможность при обращении к подпрограммам изменять регистровые окна.

Отличие от предыдущей модели: размер окна при переключении окон может варьироваться от 96 до 1 регистра.

БИЛЕТ 14 Виртуальная оперативная память

Аппарат виртуальной памяти

Рассмотрим некоторые проблемы организации адресации в программах/процессах и связанные с ними проблемы использования ОЗУ в целом.

В общем случае схема получения исполняемого кода программы следующая:

Данная схема достаточно очевидна, так как она связана с привычным для нас процессами трансляции. Остановимся подробней на исполняемом модуле. Данный модуль представляет собой готовую к выполнению программу в машинных кодах. При этом внутри программы к моменту образования исполняемого модуля используется модель организации адресного пространства программы (эта модель, в общем случае не связана с теми ресурсами ОЗУ, которые предполагается использовать позднее). Для простоты будем считать, что данная модель представляет собой непрерывный фрагмент адресного пространства в пределах которого размещены данные и команды программы. Будем называть подобную организацию адресации в программе программной адресацией или логической/виртуальной адресацией.

Итак, повторяем, на уровне исполняемого кода имеется программа в машинных кодах, использующая адреса данных и команд. Эти адреса в общем случае не являются адресами конкретных физических ячеек памяти, в которых размещены эти данные, более того, в последствии мы увидим, что виртуальным (или программным) адресам могут ставиться в соответствие произвольные физические адреса памяти. То есть при реальном исполнении программы далеко не всегда виртуальная адресация, используемая в программе совпадает с физической адресацией, используемой ЦП при выполнении данной программы.

Элементарное программно-аппаратное решение – использование возможности базирования адресов. Суть его состоит в следующем: пусть имеется исполняемый программный модуль. Виртуальное адресное пространство этого модуля лежит в диапазоне [0, Aкон]. В ЭВМ выделяется специальный регистр базирования Rбаз., который содержит физический адрес начала области памяти, в которой будет размещен код данного исполняемого модуля. При этом исполняемые адреса, используемые в модуле будут автоматически преобразовываться в адреса физического размещения данных путем их сложения с регистром Rбаз.. Таким образом код используемого модуля может перемещаться по пространству физического ОЗУ. Эта схема является элементарным решением организации простейшего аппарата виртуальной памяти. То есть аппарата, позволяющего автоматически преобразовывать виртуальные адреса программы в адреса физической памяти.

Рассмотрим более сложные механизмы организации виртуальной памяти.

Пусть имеется вычислительная система, функционирующая в мультипрограммном режиме. То есть одновременно в системе обрабатываются несколько программ/процессов. Один из них занимает ресурсы ЦП. Другие ждут завершения операций обмена, третьи – готовы к исполнению и ожидают предоставления ресурсов ЦП. При этом происходит завершение выполнявшихся процессов и ввод новых, это приводит к возникновению проблемы фрагментации ОЗУ. Суть ее следующая. При размещении новых программ/процессов в ОЗУ ЭВМ (для их мультипрограммной обработки) образуются свободные фрагменты ОЗУ между программами/процессами. Суммарный объем свободных фрагментов может быть достаточно большим, но, в то же время, размер самого большого свободного фрагмента недостаточно для размещения в нем новой программы/процесса. В этой ситуации возможна деградация системы – в системе имеются незанятые ресурсы ОЗУ, но они не могут быть использованы. Путь решения этой проблемы – использование более развитых механизмов организации ОЗУ и виртуальной памяти, позволяющие отображать виртуальное адресное пространство программы/процесса не в одну непрерывную область физической памяти, а в некоторую совокупность областей.

Организация страничной памяти

Страничная организация памяти предполагает разделение всего пространства ОЗУ на блоки одинакового размера – страницы. Обычно размер страницы равен 2k. В этом случае адрес, используемый в данной ЭВМ, будет иметь следующую структуру:

БИЛЕТ 15

Пример организации страничной виртуальной памяти

Взять 14 билет.

Модельная (упрощенная) схема организации функционирования страничной памяти ЭВМ следующая: Пусть одна система команд ЭВМ позволяет адресовать и использовать m страниц размером 2k каждая. То есть виртуальное адресное пространство программы/процесса может использовать для адресации команд и данных до m страниц.

Физическое адресное пространство, в общем случае может иметь произвольное число физических страниц (их может быть больше m, а может быть и меньше). Соответственно структура исполнительного физического адреса будет отличаться от структуры исполнительного виртуального адреса за счет размера поля ”номер страницы”.

В виртуальном адресе размер поля определяется максимальным числом виртуальных страниц – m.

В физическом адресе – максимально возможным количеством физических страниц, которые могут быть подключены к данной ЭВМ (это также фиксированная аппаратная характеристика ЭВМ).

В ЦП ЭВМ имеется аппаратная таблица страниц (иногда таблица приписки) следующей структуры:

Таблица содержит m строк. Содержимое таблицы определяет соответствие виртуальной памяти физической для выполняющейся в данный момент программы/процесса. Соответствие определяется следующим образом: i-я строка таблицы соответствует i-й виртуальной странице.

Содержимое строки αi определяет, чему соответствует i-я виртуальная страница программы/процесса. Если αi ≥ 0, то это означает, что αi есть номер физической страницы, которая соответствует виртуальной странице программы/процесса. Если αi= -1, то это означает, что для i-й виртуальной страницы нет соответствия физической странице ОЗУ (обработка этой ситуации ниже).

Итак, рассмотрим последовательность действий при использовании аппарата виртуальной страничной памяти.

  1. При выполнении очередной команды схемы управления ЦП вычисляют некоторый адрес операнда (операндов) Aисп. Это виртуальный исполнительный адрес.

  2. Из Aисп. Выделяются значимые поля номер страницы (номер виртуальной страницы). По этому значению происходит индексация и доступ к соответствующей строке таблицы страниц.

  3. Если значение строки ≥ 0, то происходит замена содержимого поля номер страницы на соответствующее значение строки таблицы, таким образом, получается физический адрес. И далее ЦП осуществляет работу с физическим адресом.

  4. Если значение строки таблицы равно –1 это означает, что полученный виртуальный адрес не размещен в ОЗУ. Причины такой ситуации? Их две. Первая – данная виртуальная страница отсутствует в перечне станиц, доступных для программы/процесса, то есть имеет место попытка обращения в “ чужую”, не легитимную память. Вторая ситуация, когда операционная система в целях оптимизации использования ОЗУ, откачала некоторые страницы программы/процесса в ВЗУ(свопинг, при действиях ОС при свопинге позднее). Что происходит в системе, если значение строки таблицы страниц –1, и мы обратились к этой строке? Происходит прерывание “ защита памяти”, управление передается операционной системе (по стандартной схеме обработки прерывания и далее происходит программная обработка ситуации (обращаем внимание, что все, что выполнялось до сих пор – пункт 1, 2, 3 и 4 – это действия аппаратуры, без какого-либо участия программного обеспечения).
    ОС по содержимому внутренних данных определяет конечную причину данного прерывания: или это действительно защита памяти, или мы пытались обратиться к странице ОЗУ, которая временно размещена во внешней памяти.

Таким образом, предложенная модель организации виртуальной памяти позволяет решить проблему фрагментации ОЗУ. На самом деле, некоторая фрагментация остается (если в странице занят хотя бы 1 байт, то занята вся страница), но она является контролируемой и не оказывает значительного влияния на производительность системы.

Далее, данная схема позволяет простыми средствами организовать защиту памяти, а также своппирование страниц.

Предложенная модель организации виртуальной памяти позволяет иметь отображение виртуального адресного пространства программы/процесса в произвольные физические адреса, также позволяет выполнять в системе программы/процессы, размещенные в ОЗУ частично (оставшаяся часть может быть размещена во внешней памяти).

Недостаток – необходимость наличия в ЦП аппаратной таблицы значительных размеров.

Итак мы рассмотрели модельный, упрощенный вариант организации виртуальной памяти. Реальные решения используемые в различных архитектурах ЭВМ могут быть гораздо сложнее, но основные идеи остаются неизменными.



Билет 16. Многомашинные, многопроцессорные ассоциации. Классификация. Примеры.

Системы с распределенной памятью – MPP.

Примером системы с распределенной памятью может служить массивно-параллельная архитектураMPP1. Массивно-параллельные системы состоят из однородных вычислительных узлов, каждый из которых включает в себя:

  • один или несколько процессоров

  • локальную память, прямой доступ к которой с других узлов невозможен

  • коммуникационный процессор или сетевой адаптер

  • устройства ввода/вывода

Схема MPP системы, где каждый вычислительный узел (ВУ) имеет один процессорный элемент (например, RISC-процессор, одинаковый для всех ВУ), память и коммуникационное устройство, изображена на рисунке.

Рис. 1 Архитектура MPP.

Помимо вычислительных узлов, в систему могут входить специальные узлы ввода-вывода и управляющие узлы. Узлы связаны между собой посредством высокоскоростной среды передачи данных определенной топологии. Число процессоров в MPP-системах может достигать нескольких тысяч.

Поскольку в MPP-системе каждый узел представляет собой относительно самостоятельную единицу, то, как правило, управление массивно-параллельной системой в целом осуществляется одним из двух способов:

  1. На каждом узле может работать полноценная операционная система, функционирующая отдельно от других узлов. При этом, разумеется, такая ОС должна поддерживать возможность коммуникации с другими узлами в соответствии с особенностями данной архитектуры.

  2. «Полноценная» ОС работает только на управляющей машине, а на каждом из узлов MPP-системы работает некоторый сильно «урезанный» вариант ОС, обеспечивающий работу задач на данном узле.

В массивно-параллельной архитектуре отсутствует возможность осуществлять обмен данными между ВУ напрямую через память, поэтому взаимодействие между процессорами реализуется с помощью аппаратно и программно поддерживаемого механизма передачи сообщений между ВУ. Соответственно, и программы для MPP-систем обычно создаются в рамках модели передачи сообщений.

Системы с общей памятью – SMP.

В качестве наиболее распространенного примера систем с общей памятью рассмотрим архитектуру SMP2симметричную мультипроцессорную систему. SMP-системы состоят из нескольких однородных процессоров и массива общей памяти, который обычно состоит из нескольких независимых блоков. Слово «симметричный» в названии данной архитектуры указывает на то, что все процессоры имеют доступ напрямую (т.е. возможность адресации) к любой точке памяти, причем доступ любого процессора ко всем ячейкам памяти осуществляется с одинаковой скоростью. Общая схема SMP-архитектуры изображена на Рис. 2.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5258
Авторов
на СтудИзбе
420
Средний доход
с одного платного файла
Обучение Подробнее