Главная » Все файлы » Просмотр файлов из архивов » Документы » И.С. Гудилина, Л.Б. Саратовская, Л.Ф. Спиридонова - English Reader in Computer Science

И.С. Гудилина, Л.Б. Саратовская, Л.Ф. Спиридонова - English Reader in Computer Science, страница 12

2019-05-05СтудИзба

Описание файла

Документ из архива "И.С. Гудилина, Л.Б. Саратовская, Л.Ф. Спиридонова - English Reader in Computer Science", который расположен в категории "". Всё это находится в предмете "английский язык" из 3 семестр, которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Онлайн просмотр документа "И.С. Гудилина, Л.Б. Саратовская, Л.Ф. Спиридонова - English Reader in Computer Science"

Текст 12 страницы из документа "И.С. Гудилина, Л.Б. Саратовская, Л.Ф. Спиридонова - English Reader in Computer Science"

We can learn much about the process of scientific collaboration by talking to the scientists themselves. As part of the development of DOE's Environmental Molecular Sciences Laboratory project, researchers were asked about the nature of their current and future collaborations in order to understand what types of communications an electronic collaborative environment must support. Scientific collaborations span a wide range in terms of group size, collaboration style, and focus (experimental, theoretical, and computational). The focus at EMSL is basic scientific research undertaken by as many as 300 researchers.

On the basis of this feedback, we identified four broad categories:

Peer-to-peer. Some collaborations involve researchers in the same field sharing an instrument. For example a remote researcher might contribute to the design of a new detector and then use the instrument to study systems of interest in this type of collaboration, the researchers share a common scientific vocabulary. The most important aspects of the collaboration are shared instruments and raw, unanalyzed data. Remote instrument control and direct data access are important in this type of collaboration.

Mentor-student. Some collaborations involve senior scientists and their more junior partners, such as students and postdoctoral fellows. In these collaborations, the mentor may use prepared materials and live demonstrations to teach data acquisition, analysis techniques, and scientific principles. The mentor must then observe as the student demonstrates mastery of the new concepts by using them appropriately. The necessary real-time interactions between mentor and student go far beyond standard conferencing:

A mentor and student must be able to work collaboratively and interactively. In this type of collaboration, access to many types of archival information — data. notes, results, and so on — is also important so that the student can revisit the material.

Interdisciplinary. Some collaborations involve scientists who are doing complementary studies of the same system. For instance, a theorist may calculate molecular structures of clusters while an experimentalist uses laser spectroscopy to make experimental structure measurements. Researchers in these collaborations may not share a common vocabulary and so must often translate their results into other terms. Here, researchers might alternate between the roles of mentor and student as they seek to synthesize their findings. In these types of collaborations, it is less important to provide direct access to instruments and raw data; more important is access to summaries and analyses, perhaps recorded into an electronic notebook, and support for the discussion of unfamiliar concepts so that misunderstandings can be corrected.

Producer-consumer. Some collaborations also involve researchers in different disciplines, but in this type one researcher or research team provides input to another, For example, a mass spectroscopist might determine the sequence of a protein for a biologist. or a surface scientist might provide reaction rate data to a geologist who wants to model the subsurface transport of hazardous wastes. An extreme form of this collaboration type-involves an analytical laboratory that works on a fee-per-service basis. Here there is often a wider gap between the disciplines and motivations of researchers: A scientist may want to study a new physical phenomenon, while the engineering collaborator wants to reduce the cost of a clean-up effort. Collaborators in this type of relationship have little chance for professional contact. They place the most importance on being able to receive a sample and transmit results to the other party. However, if these collaborators can communicate more closely, they might be able to generate new ideas and approaches. To foster close communication among basic and applied scientists, laboratories hold seminar series, workshops, and pizza dinners. This approach suggests that such collaborations may become more complementary when researchers are provided with readily available tools for electronic discussions.

It is important to note that although we present these classifications as distinct types, a single collaboration may actually contain elements from several styles, either in parallel or as the collaboration evolves. Nevertheless, these categories do help to show the varying communications needs researchers have as they work in different modes and how an individual's needs may change as the task or nature of the collaboration changes. The fact that researcher may switch collaboration styles frequently as he works through various tasks in any experiment implies that electronic collaboratory environment should not impose a particular mode. It should instead provide a wide range of capabilities that can be quickly and easily selected and configured for the task at hand. Such flexibility addresses some of the social barriers inhibiting collaboration.

COLLABORATION TECHNOLOGY

Electronic collaboration must occur in an environment that lets collaborators work intimately with one another.

Current implementations use an integrated set of crossplatform tools such as electronic notebooks, video conferencing systems, electronic whiteboards, shared screens, information-access tools, and instrument-control tools. Figure 1 illustrates how different tools provide varying functionality in interactions depending upon the static or dynamic nature of the information exchange as well as upon the synchronous or asynchronous nature of the session.

E-mail supports collaboration via a time-serial dialog. Videoconferencing supports realtime discussion and, with the addition of graphics and whiteboard capabilities, presentation and brainstorming.

Because the collaboratory concept brings all the scientific resources used by researchers into the mix, both real-time work and asynchronous collaboration are possible. The effect of having all scientific resources available to all researchers moves a remote collaborator from the role of part-time consultant to coworker.

Full support for this vision requires substantial additional work, but progress is being

Figure 1. Tools provide varying functionality. Some are synchronous, while others are asynchronous.
Some work well for more static applications, while some are inherently dynamic.

production systems. Network infrastructure is vital for supporting collaboratory-style interaction and linking high-performance computing systems, experimental equipment, data-acquisition systems, and the scientist's desktop workstation into a unified research tool.

National laboratories, academic institutions, and commercial enterprises are rapidly advancing collaboratory technology. In parallel with high-speed networks and secure environments, collaborative applications for videoconferencing, window sharing, instrument control, and document sharing are appearing. However, there is still much to be done.

As part of the DCEE program, the EMSL has developed Core, a prototype collaboratory that provides a loosely integrated set of Internet capabilities that appear as extensions to the Web. Core provides a one-click method to start or join multitool collaborative sessions from a Web page.

The Core Session Manager and Desktop Executive launch and track active sessions, participants, and tools, letting users pick capabilities appropriate for their work without having to be aware of the connection syntax of individual tools, port numbers, firewalls, or Internet addresses.

Core and the tools it uses are under development at PNNL and other national laboratories and universities.

Figure 2. A sample electronic notebook page.

The tools have been chosen because they provide a wide range of cross-platform functions that let researchers interact with remote colleagues in a rich, in-process, style. The tools include:

Audio/video conferencing. Collaborators can see and hear each other and monitor instruments and laboratories. The main tool used is network-based software such as Mbone.

Chatting. Collaborators can exchange text messages.

Shared computer display and whiteboard. Collaborators can view and interact with any program running on the shared display. They can also use whiteboard-style annotation on top of a live image and remotely control the shared application. This tool turns noncollaborative applications into collaborative ones. Electronic whiteboard functions are also provided.

Shared electronic notebook. Collaborators can share this electronic version of a traditional paper laboratory notebook. Electronic notebooks provide distributed access to data, as well as automated data entry, searching, and other information processing not possible in a paper notebook. The current EMSL notebook creates a dynamic Web page that can be queried, display experiment information, and accept multimedia user annotations. The Web page provide the data files, an image, or a live Java-based graphical summary of the data in each file, and information about each file (such as the instrument parameters used, operator's name, and date). Information from instruments that is sent to the enterprise database/archive system is queried to provide automatic updates to the electronic notebook. Users may query to select a subset of files to by displayed by sample, date, and owner name. They can also easily add text, picture, and file annotations to the original information. Figure 2 shows a sample notebook page.

File sharing. Multiple collaborators can transfer files with a drag-and-drop^ facility. On-line instruments, computation, and visualization. Data-acquisition, analysis, computation, and visualization software written for a single local user can be modified for collaborative use in an environment such as Core. One of the first on-line instruments in the EMSL, a radio frequency ion-trap mass spectrometer; can be launched via Core and saves data directly to the electronic notebook. The instrument software also includes pan und tilt controls for a laboratory video camera that can be included in a videoconference. Similarly, analysis, modeling, and other types of scientific applications can be enhanced to let multiple users simultaneously view and interact with them.

Web browser synchronization. Collaborators can use Web material for their lectures or discussions. When one user goes to a new URL, all linked browsers automatically follow. Lecture {only the leader's browser is echoed) or discussion (peer-to-peer) modes arc possible.

These tools must be integrated into a user-friendly environment cognizant of users' psychosocial needs. Emerging technologies will quickly drive such enhancements as common security, session management, communications programming interfaces, object-oriented scientific data models, and models of the experiment process. Emerging standards for videoconferencing and whiteboards, and cross-platform languages such as Java, will also contribute to the creation of highly integrated and highly extensible collaboration environments.

At that point, new two- or three-dimensional interfaces to environments can be developed. A laboratory notebook may contain not only notes and drawings, but instrument controls, real-time data graphs, and videoconferencing windows. An immersive, virtual building may let users see and hear each other, with persistent whiteboards for group notes, and shared simulations and virtual instruments set up in various laboratories.

BARRIERS TO ADOPTION

The barriers to implementing these environments are, both technical and sociological. Existing tools are often immature, unintegrated, hard to support, and costly to maintain.

The adage "build it and they will come" is disproved daily in the computing industry. A technology often exists without being used because it is perceived as adding little or no value. While we contend that the time is right for a collaboratory solution to the needs of scientific interaction, we are challenged to make it a viable necessity for scientific progress, as well as psychosocially acceptable.

We can make glowing predictions about the value collaboratories bring to scientific inquiry; we can make equally valid projections of why they will fail. We know how difficult it is to see the future clearly. We remember what the father of radio Lee De Forest said about television in 1926: "While theoretically and technically television may be feasible, commercially and financially I consider it an impossibility, a development of which we need waste little time dreaming."

Videoconferencing has been slow to catch on partly because of its cost, hardware restrictions, lack of standards, and poor audio and video quality, The perceived benefit of videoconferencing is not sufficient to overcome the problems of using available systems.

Mbone-based freeware applications, which we use in several DOE projects for videoconferencing, originated only in 1992. Mbone is now used extensively by a small class of Internet users for videoconferencing and broadcasts. The Unix-based Mbone video applications provide frame rates of only a few per second, while consuming about 200 Kbytes/sec of network bandwidth. Mbone is now providing one-way videoconferencing to Mac and PC platforms. Cross-platform whiteboards, electronic notebooks, and shared screens use less bandwidth than video but remain in an early state of development, especially with regard to interoperability.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5301
Авторов
на СтудИзбе
416
Средний доход
с одного платного файла
Обучение Подробнее