Главная » Все файлы » Просмотр файлов из архивов » Документы » Сварные конструкции1 134-199стр.

Сварные конструкции1 134-199стр. (Сварные конструкции), страница 8

2018-01-12СтудИзба

Описание файла

Файл "Сварные конструкции1 134-199стр." внутри архива находится в папке "Сварные конструкции". Документ из архива "Сварные конструкции", который расположен в категории "". Всё это находится в предмете "основы проектирования сварных конструкций" из 7 семестр, которые можно найти в файловом архиве РТУ МИРЭА. Не смотря на прямую связь этого архива с РТУ МИРЭА, его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "основы проектирования сварных конструкций" в общих файлах.

Онлайн просмотр документа "Сварные конструкции1 134-199стр."

Текст 8 страницы из документа "Сварные конструкции1 134-199стр."

Пределы длительной прочности основного металла, металла шва и сварных соединений σд.п, МПа

Длительная прочность сварных соединений термически упрочненных сталей может быть существенно ниже вследствие разупрочнения в зонах термического влияния. В хромомолибденованадиевых сталях разупрочняется участок высокого отпуска и неполной перекристаллизации, в аустенитных сталях и сплавах с интерметаллидным упрочнением — участок вблизи линии сплавления, нагреваемый до температур аустенизации. Зоной разупрочнения может быть и сам шов, если не обеспечена его равнопрочность основному металлу, что обычно более вероятно в сталях с высокой степенью легирования. Разупрочненные участки выступают в роли мягких прослоек (см. гл. 3). Общая закономерность подкрепляющего действия соседних более прочных участков на мягкую прослойку при высоких температурах сохраняется, если разрушение прослойки

п роисходит вязко. Влияние высоких температур из-за ползучести металла проявляется в слабом подкрепляющем действии соседних участков, но более важно, что при длительных выдержках разрушение в прослойке может произойти хрупко, причем уровень прочности при этом может оказаться даже ниже уровня прочности металла мягкой прослойки. На рис. 6.8 показана зависимость длительной прочности мягкой прослойки от времени, если прочность основного металла выше прочности прослойки. Металл мягкой про- слойки, испытанный отдельно, на участке 1 разрушается вязко, а на участке 1’ при длительных выдержках — хрупко. При контактном упрочнении прочность соединения с прослойкой при вязких разрушениях выше прочности самого металла прослойки (линии 2 и 3), причем для тонкой прослойки (линия 3) эффект упрочнении проявляется сильнее. Вследствие эффекта контактного упрочнения напряжение в мягкой прослойке не является одноосным, что уменьшает пластическую деформацию ползучести. Уменьшение пластической деформации из-за объемности напряженного состояния приводит, в свою очередь, к более раннему переходу мягких прослоек от вязкого разрушения к хрупкому, причем их прочность оказывается ниже прочности металла мягкой прослойки. На рисунке переход от вязкого разрушения к хрупкому показан скачкообразно. На самом деле разрушения в мягкой прослойке имеют обычно смешанный характер, сочетая в разной пропорции участки внутризеренных и межзеренных трещин. При более длительных выдержках преобладают межзеренные (хрупкие) участки разрушения.

Степень проявления эффекта контактного упрочнения зависит от разницы свойств основного металла и мягкой прослойки, а также от относительной толщины прослойки. На рис. 6.9 приведены графики длительной прочности и пластичности сварного соединения с мягкими прослойками разной толщины. Для сравнения взяты основной металл и металл мягкой прослойки, первый из которых (7) более прочен, а второй (2) более пластичен. При t < t1 разрушение происходит по основному металлу. При t = t1 разрушение переходит в прослойку большей толщины (3). поперечное сужение ψ резко падает. При t > t1 наклон линии прочности 3 больше, чем линии 1, что объясняется объемным напряженным состоянием и снижением уровня пластической деформации. При этом увеличивается число

фрагментов межзеренного излома. В случае более тонкой прослойки (4} разрушение в нее переходит позже (при t = t2, но наклон прямой 4 оказывается круче, а уменьшение пластичности значительнее вследствие более сильного эффекта объемного охрупчивания. При большой длительности уровни прочности соединения с прослойкой могут стать даже ниже уровня прочности самого металла мягкой прослойки (2).

В зависимости от относительной толщины мягкой прослойки χ (рис. 6.10) меняется отношение предела длительной прочности соединения σ’д.п к пределу длительной прочности основного металла σд.п, а также пластичность металла до разрушения δ или χ. Причем это изменение зависит от времени t до разрушения. Для сравнительно широкой прослойки (х > 0,5) контактного упрочнения недостаточно и прочность соединения соответствует прочности мягкой прослойки.

В случае непродолжительного времени до разрушения (кривая t1) прочность соединения оказывается равной прочности основного металла и при сравнительно широких прослойках = 0,3 — 0,4). Соединения с узкими прослойками равнопрочны основному металлу при большем времени до разрушения, но обнаруживают меньшую пластичность. При весьма большом времени до разрушения (t4) принципиально возможно разрушение, при котором прочность соединения окажется даже ниже прочности металла мягкой прослойки. Из рис. 6.10 видно, что уменьшение длительной прочности сопровождается снижением пластичности, служащим надежным признаком перехода сварного соединения к хрупкому разрушению.

Часто местами хрупкого разрушения являются зоны вблизи линии сплавления, охватывающие сравнительно небольшие по протяженности участки. Этот тип разрушения получил название локальных разрушений. Для оценки склонности сварных соединений к локальным разрушениям используют различные методы, которые могут быть разделены на три группы.

1. Технологические жесткие пробы. Для этих проб проводят сварку образцов, в той или иной мере воспроизводящих неблагоприятные условия, оказываемые сваркой на изменение свойств металла и образование остаточных напряжений. Последующая выдержка образцов в печах должна приводить к образованию трещин. Их

выявляют либо осмотром, либо разрезкой образцов на куски для определения числа трещин. Определяют также минимальное время до появления трещин. Технологические пробы подходят в основном для выявления более склонных к локальным разрушениям сталей и относятся к качественным методам испытаний.

2 . Имитация термического цикла сварки на образцах. Методы этой группы основаны на воспроизведении термического цикла сварки на основном металле и последующем испытании образца в условиях, отвечающих режиму эксплуатации. Хотя такие методы дают количественные результаты оценки, они не в полной мере воспроизводят влияние сварки, например деформационный цикл и диффузионные процессы. Преимущество их состоит в том, что они

не предусматривают проведения сварки и могут быть использованы для оценки качества стали на металлургических заводах.

3. Испытание образцов, вырезанных из сварных соединений. В этом случае образец несет в себе термодеформационное воздействие сварки, а термические и силовые условия эксплуатации создаются во время испытаний. Недостатком таких испытаний является отсутствие собственных напряжений, свойственных натуральным сварным соединениям. Испытание образцов на изгиб с постоянной скоростью деформации (методика Центрального котлотурбинного института) выявляет склонность сварных соединений к локальным хрупким разрушениям. За показатель стойкости сварного соединения хрупкому разрушению принимают относительное удлинение крайнего волокна до появления трещины в образце (рис. 6.11). Склонность к хрупким разрушениям возрастает с уменьшением скорости деформации, что в данном случае соответствует увеличению длительности испытания.

Одной из главных причин хрупкости является дисперсионное упрочнение. Повышение стойкости к хрупким разрушениям металла шва и околошовной зоны в основном достигается за счет ослабле-

ния эффекта дисперсионного упрочнения путем соответствующего выбора химического состава основного и наплавленного металла,

режимов сварки и термической обработки. Конкретные рекомендации приведены в книге [2].

§ 3. Расчет сварных соединений на прочность

Расчет сварных соединений, работающих при высоких температурах, выполняется по допускаемым напряжениям, которые назначают в зависимости от допускаемых напряжений для основного металла, способа сварки, термической обработки и контроля качества сварных соединений. Допускаемые напряжения для основного металла принимают равными минимальному из следукщих соотношений: [σ] = σв/n1; [σ] = σт/n2; [σ] = σд.п/n3; [σ] = σп/n4, где σв, σт, σд.п и σп — гарантированные при температуре эксплуатации соответственно временное сопротивление, предел текучести, предел длительной прочности и предел ползучести (для весьма точных узлов). Коэффициенты запаса п1, п2, п3, п4 принимают в соответствии с табл. 6.2.

Таблица 6.2

Коэффициенты запаса



В зависимости от рабочей температуры характеристиками для расчета иа прочность являются: при температуре ниже 250 °С (для углеродистых сталей и стали 12Х1МФ) — временное сопротивление σв; при температуре 260—420 °С (для углеродистых сталей) и ниже 550 °С (для стали 12Х18Н10Т)— предел текучести σт; при температуре выше 420 °С (для углеродистых сталей), выше 470 °С (для стали 12Х1МФ), выше 550 °С (для сталей 12Х18Н10Т и 12Х18Н12Т) — предел длительной прочности σд.п.

Допускаемые напряжения для сварных соединений [σ'] определяют умножением допускаемых напряжений для основного металла [σ] на коэффициент прочности φ, учитывающий отрицательное влияние сварки. При полном проваре по всей толщине, проведении в необходимых случаях термической обработки и контроле качества шва по всей длине неразрушающими методами φ = 1 для углеродистой, низколегированной марганцовистой и хромомолибденовой сталей, сталей типа 12Х18Н10Т и им подобных; φ = 0,8 для хромомолибденованадиевой и высокохромистой сталей. Коэффициент прочности стыковых соединений углеродистой и низколегированной марганцовистой сталей, контроль качества которых неразрушающими методами производится не по всей длине, принимается в зависимости от способа сварки: φ = 0,85 при автоматической двусторонней сварке под флюсом, электрошлаковой сварке, контактной сварке, односторонней ручной и автоматической сварке под флюсом на подкладке или с подваркой корня шва, ручной сварке в СО2 или аргоне; φ = 0,7 при всех других, не указанных выше видах сварки.

Для других сварных соединений и новых марок сталей допускаемые напряжения должны устанавливаться по результатам испытаний сварных соединений.

ГЛАВА 7

СОБСТВЕННЫЕ НАПРЯЖЕНИЯ ПРИ СВАРКЕ

§ 1. Основные понятия

В теории сварочных деформаций и напряжений принято использовать расположение осей координат, показанное на рис. 7.1. Ось Ох направлена вдоль шва, Оу — поперек шва в плоскости пластины, Оz поперек шва в направлении толщины. Соответственно различают напряжения (σx, σy, σz, τxy, τyz, τzx, деформации εx, εy, εz, γxy, γyz, γzx и перемещения точек тела и — по оси Ох, υ — по оси Оу, w по оси Оz.

Расширение и сокращение металла от неравномерного нагрева или охлаждения, а также от структурных превращений образуют так называемые собственные, или внутренние деформации и напряжения при сварке. В отличие от напряжений и деформаций, создаваемых нагрузками, собственные напряжения и деформации существуют в теле при отсутствии каких-либо нагрузок.


Собственные напряжения — это такие напряжения, которые существуют, в теле при отсутствии приложенных к нему поверхностных или объемных (инерционных, гравитационных) сил.

Чтобы более ясно понимать причины образования собственных напряжений, рассмотрим различные виды деформаций металла.

1. Температурные деформации εα вызваны изменением размера частиц тела при изменении температуры. К температурным деформациям условно относят также деформации, возникающие в процессе структурных превращений:

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5258
Авторов
на СтудИзбе
419
Средний доход
с одного платного файла
Обучение Подробнее