Лекция8 (Лекции по микропроцессорной технике), страница 2

2018-01-12СтудИзба

Описание файла

Файл "Лекция8" внутри архива находится в папке "Лекции по микропроцессорной технике". Документ из архива "Лекции по микропроцессорной технике", который расположен в категории "". Всё это находится в предмете "микропроцессорная техника" из 5 семестр, которые можно найти в файловом архиве РТУ МИРЭА. Не смотря на прямую связь этого архива с РТУ МИРЭА, его также можно найти и в других разделах. Архив можно найти в разделе "лекции и семинары", в предмете "микропроцессорная техника" в общих файлах.

Онлайн просмотр документа "Лекция8"

Текст 2 страницы из документа "Лекция8"

Все рассмотренные системы считывания изображения позволяют получить графическое (но не символьное) представление информации.

Преобразовывать считанное изображение в символьный вид может выполняться аппаратурными средствами. Для этого используются устройства считывания:

  • с распознаванием: сравнение с эталонами;

  • метод зондов;

  • нейронные системы типа «перцептрон».

Принцип действия считывателя с распознаванием методом эталонов виден из структурной схемы (рис. 8.4).

Блок считывания (в качестве которого может использоваться любой рассмотренный ранее считыватель) передает цифровое описание считанного изображения (или его фрагмента) в сравнивающее устройство, на другой вход которого поступают описания известных объектов из памяти с эталонами. При совпадении эталона со считанным изображением вырабатывается сигнал распознавания и на выход считывателя выдается код распознанного элемента (если распознается текст, то код ASCII).

Метод зондов заключается в особом построении линеек (или матриц) фотоэлементов. Например, зонд может состоять из горизонтальных, вертикальных и наклонных линеек фотоэлементов (рис. 8.5).

На такой зонд проецируется распознаваемый символ. По комбинации затененных линеек опознается символ, и на выход распознающей системы поступает код распознанного символа.

Распознающее устройство типа «перцептрон» имеет матрицу фотоэлементов l), суммирующие блоки (Sj) и решающие элементы l) (рис. 8.6).

Матрица фотоэлементов Аl связана со всеми суммирующими элементами Sj которые, в свою очередь, связаны с решающими элементами Kl. Вначале (пока перцептрон не обучен) веса связей элементов Аl с Sj одинаковы.

В процессе обучения на фотоэлементы проецируется какое-либо изображение (взятое из обучающей выборки). Веса связей Аl с Sj изменяются (например, случайным образом) до тех пор, пока на выходе не образуется код распознаваемого изображения. После этого из обучающей выборки берется следующее изображение и проецируется на матрицу фотоэлементов, после чего веса связей Аl с Sj корректируются до получения на выходе правильного кода распознаваемого изображения.

После обучения перцептрон способен распознавать образы, поступившие в виде изображения на матрицу фотоэлементов, выдавая на выходе их коды.

Перцептрон относится к параллельным (нейронным) системам, так как в нем используется принцип, распознавания, реализованный в нейронных сетях живых организмов.

Суммирующие элементы перцептрона представляют собой аналоговые сумматоры, выдающие на выходе сумму сигналов, поступивших на входы с учетом веса каждой связи элементов Аl с Sj (того самого веса, который изменялся в процессе обучения).

Решающие элементы могут быть построены по принципу выделения наибольшего или наименьшего из поступивших на них сигналов, но могут быть построены и на основе более сложных алгоритмов.

Введение в схему перцептрона обратных связей (с выхода на вход) позволяет реализовать в них самообучение.

Учитывая, что современные сканеры могут иметь разрешающую способность, превышающую 1000 пиксел на дюйм, удается программным путем повысить чувствительность сканера в определении яркостных характеристик считанных изображений. Эта процедура называется фильтрованием и приводит к получению смазанных изображений, так как при увеличении количества уровней серого снижается контрастность, Конструктивно сканеры выпускаются в двух вариантах: портативные и настольные.

Портативные сканеры представляют собой устройство, внешне похожее на мышь, которое перемещается по вводимому в ЭВМ изображению. Обычно сканеры имеют небольшие размеры (ширина 2,5 дюйма = 6,4 см). Поэтому большие изображения (например, лист текста формата А4) приходится считывать за несколько проходов. Но в поставляемом вместе со сканером программном обеспечении предусмотрена функция «склейки» изображений, которая позволяет соединить считанные за разные проходы части в единое целое. Разрешающая способность таких сканеров редко превышает 400 пиксел на дюйм, каждый пиксел сопровождается четырехбитовым кодом уровня серого, что соответствует 16 оттенкам шкалы яркости. Считанное таким сканером изображение можно распечатать без преобразования на цветном принтере. Для печати же на черно-белом принтере его нужно преобразовать из полутонового в штриховое, шкала яркости которого имеет только два уровня - белое и черное.

Настольные сканеры выпускаются трех типов:

sheet-fed - строчный сканер, в котором носитель изображения пропускается через неподвижную считывающую головку (считывать можно только листовой материал, книги и журналы - нельзя);

flat-bed - страничный сканер, в котором считываемое изображение неподвижно;

over-head - сканер-планшет проекторного типа, в котором считываемое изображение помещается на экране (изображением вверх), считывающий блок расположен вверху устройства.

2. Устройства вывода

2.1 Системы визуального отображения информации (видеосистемы)

Видеосистемы предназначены для оперативного отображения информации, доведения ее до сведения оператора ЭВМ. Обычно они состоят из двух частей: монитора и адаптера.

Монитор служит для визуализации изображения, адаптер – для связи с микропроцессорным комплектом.

Классификацию мониторов можно провести по следующим признакам:

• по используемым физическим эффектам;

• по принципу формирования изображения на экране;

• по способу управления;

• по длительности хранения информации на экране;

• по цветности изображения;

• по эргономическим характеристикам.

По принципу формирования изображения мониторы делятся на плазменные, электролюминесцентные, жидкокристаллические и электронно-лучевые.

Плазменные, электролюминесцентные и жидкокристаллические мониторы относятся к дисплеям с плоским экраном. Для них характерно: экран имеет малые физические размеры, не мерцает, полностью отсутствует рентгеновское излучение. Мониторы этого вида допускают локальное стирание и замену информации, имеют малый вес и незначительное потребление энергии, большую механическую прочность и длительный срок службы.

Плазменные и электролюминесцентные мониторы являются активными, излучающими свет. Для работы с ними не нужен посторонний источник света.

Жидкокристаллические - пассивные мониторы. Они работают только при наличии постороннего источника света и способны работать либо в отраженном, либо в проходящем свете. Жидкокристаллические мониторы используют способность жидких кристаллов изменять свою оптическую плотность или отражающую способность под воздействием электрических сигналов.

В плазменной панели элемент изображения образуется в результате Газового разряда, который сопровождается излучением света. Конструктивно панель состоит из трех стеклянных пластин, на две из которых нанесены тонкие прозрачные проводники (до 2 - 4 проводников на 1 мм). На одной пластине проводники расположены горизонтально, на другой - вертикально. Между ними находится третья стеклянная пластина, в которой в местах пересечения проводников имеются сквозные отверстия. Эти отверстия при сборке панели заполняются инертным газом. Вертикально и горизонтально расположенные проводники образуют координатную сетку; на пересечении проводников находятся элементы изображения - пикселы (picture element). При разрешающей способности 512х512 пиксел такая панель имеет размеры не более 200х200 мм и толщину 6 - 8 мм. В настоящее время созданы цветные плазменные панели с разрешающей способностью экрана 1024х1024 пиксел.

Электролюминесцентные мониторы работают на принципе люминесценции вещества при воздействии на него электрического поля. Люминесцентное вещество распыляется на внутренней поверхности одной из пластин с координатной сеткой. Напряжение на координатные шины подается такое, чтобы на пересечении координатных шин создавалось электрическое поле, достаточное для возбуждения люминофора.

Наибольшее распространение получили мониторы на электронно-лучевых трубках. Электронная лучевая трубка (ЭЛТ) представляет собой электровакуумный прибор в виде стеклянной колбы, дно которой является экраном. В колбе, из которой удален воздух, расположены электроды: электронная пушка (катод с электронагревательным элементом), анод, вертикально и горизонтально отклоняющие пластины и сетка. Снаружи на ЭЛТ установлена фокусирующая система. Внутренняя поверхность экрана покрыта люминофором, который светится при попадании на него потока электронов. Катод, поверхность которого покрыта веществом, легко отдающим электроны при нагревании, является источником электронов. Возле него образуется «электронное облако», которое под действием электрического поля анода движется в сторону экрана. По мере приближения к аноду электронный поток увеличивает скорость. Фокусирующая система сжимает поток электронов в тонкий пучок, который с помощью отклоняющих пластин направляется в нужную точку экрана. Сетка служит для регулирования плотности электронного потока. Она расположена гораздо ближе к катоду, чем анод. В зоне ее действия поток электронов имеет небольшую скорость, поэтому она оказывает на поток электронов влияние, сопоставимое с влиянием анода. Сетка может создать электрическое поле, которое тормозит электроны, уменьшает их скорость и плотность потока, движущегося в сторону экрана, и даже может полностью «запереть» трубку, не пропустить поток электронов в сторону экрана.

На отклоняющие пластины ЭЛТ подается пилообразное напряжение, которое отклоняет электронный луч и заставляет его пробегать по всей поверхности экрана, строка за строкой. На поверхности экрана появляется развертка, с помощью которой выводится требуемое изображение: в местах экрана, которые должны оставаться темными, трубка запирается, и электронный луч не доходит до поверхности экрана.

В зависимости от формы напряжения, подаваемого на отклоняющие пластины, и способа его получения различаются растровая, матричная и векторная развертки.

Растровая развертка представляет собой набор сплошных горизонтальных линий, заполняющих весь экран. Она формируется с помощью аналоговых приборов - генераторов пилообразного напряжения, отдельно для строк и отдельно для кадров. Этот вид развертки применяется в телевидении.

Матричная развертка по внешнему виду похожа на растровую, но формируется она с помощью цифровых схем (счетчиков), связанных с отклоняющей системой через цифроаналоговые преобразователи. В этом случае электронный луч на экране перемещается не непрерывно, а скачками - от одного пиксела к другому. Поэтому он не рисует линию, а высвечивает матрицу точек - пиксел. При такой развертке легко перевести луч в любую заданную точку экрана - надо только в счетчики строк и кадров поместить координаты этой точки.

Векторная развертка используется для рисования сложных фигур с помощью сплошных линий разной формы. Управление вертикальным и горизонтальным отклонением луча в этом случае осуществляется с помощью функциональных генераторов, каждый из которых настроен на прорисовку определенного графического примитива. Состав графических примитивов, из которых строится изображение, определяется наличием функциональных генераторов.

Максимальное количество строк на экране и количество точек в строке образуют разрешающую способность монитора:

• низкую: 320х200 (320 пиксел в строке, 200 строк на экране);

• стандартную: 640х200, 640х350 или 640х480;

• высокую: 750х348 или 800х600;

• особо четкую: 1024х768 или 1024х1024 и выше.

Разрешающая способность оказывает значительное влияние на качество изображения на экране, но качество изображения зависит и от других характеристик: физических размеров элементов изображения (пиксел, или точек), размеров экрана, частоты развертки, цветовых характеристик и др.

Размер элементов изображения зависит от величины зерен люминофора, напыляемого на экран, которая измеряется в миллиметрах и образует ряд: 0,42; 0,39; 0,31; 0,28; 0,26 и т. д. Фактически приведенные цифры характеризуют не диаметр точек люминофора, а расстояние между центрами этих точек.

Размер экрана, имеющего прямоугольную форму, обычно измеряется по диагонали в дюймах (12, 14, 15, 17, 21, ...). Для экрана с диагональю 14” длина горизонтальной части экрана составляет около 10”, а вертикальной - около 9”. При длине строки 10” (т.е. 257,5 мм) и размере зерна 0,42 мм в строке может разместиться 613 пиксел. Поэтому на мониторе с размером экрана 14” и размером зерна 0,42 мм невозможно получить разрешающую способность более 613 пиксел в строке при 535 пикселных строках на экране; монитор может обеспечить лишь стандартную разрешающую способность (не более 640х480). При размере зерна 0,28 мм на 14-дюймовом мониторе максимально можно получить разрешающую способность 800х600 (зато на 15-дюймовом мониторе размер зерна 0,28 позволяет обеспечить разрешающую способность 1024х768).

Необходимо отметить, что большее по размерам зерно имеет большую инерционность - электронный луч дольше «разжигает» такое зерно, но оно и светится дольше. Поэтому в мониторах с большим размером зерна частота регенерации не должна быть высокой (25 - 30 кадров в секунду достаточно, чтобы изображение «не мерцало» из-за угасания зерен люминофора). При уменьшении размеров зерна уменьшается и его инерционность. Поэтому регенерацию экрана в мониторах с зерном 0,26 и меньше приходится проводить чаще (75 - 100 раз в секунду). Для того чтобы вывести 100 раз в секунду кадр, содержащий 1000 пиксел в строке и 1000 строк, необходимо обеспечить частоту строчной развертки 100х1000х1000 = 108 Гц = 100 Мгц; частота кадровой развертки при этом составит 100х1000 =105 Гц =0,1 Мгц.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее