Главная » Все файлы » Просмотр файлов из архивов » Документы » лекция2 Технические средства ЭВМ копия (1)

лекция2 Технические средства ЭВМ копия (1) (8 лекций в ворде), страница 2

2017-08-02СтудИзба

Описание файла

Файл "лекция2 Технические средства ЭВМ копия (1)" внутри архива находится в папке "Lection 2". Документ из архива "8 лекций в ворде", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "лекции и семинары", в предмете "информатика" в общих файлах.

Онлайн просмотр документа "лекция2 Технические средства ЭВМ копия (1)"

Текст 2 страницы из документа "лекция2 Технические средства ЭВМ копия (1)"

Частота ядра 3,2 ГГц 5ГГц

  1. Степень интеграции определяется размером кристалла и количеством реализованных в нем транзисторов, или, как говорят, технологическими нормами, под которыми понимают минимальные размеры транзисторов.

Повышение степени интеграции позволяет МПр работать на более высокой внутренней тактовой частоте за счет более высокой синхронизации сигналов между его функциональными узлами, так как при сокращении расстояния между транзисторами уменьшается задержка передачи сигналов, проходящих по ним. Кроме этого, переход на более “компактную” структуру позволяет снизить энергопотребление и тепловыделение МПр.

В настоящее время используется технологии 90, 65, 45, 22, 14 нм.

45 нм- размер одного транзистора. Нм- единица измерения длины в метрической системе, равная одной миллиардной части метра (т.е. 10−9 метра).

  1. Внутреняя разрядность или разрядность внутренних регистров определяется количеством бит, одновременно обрабатываемых внутри МПр, а внешняя - количеством бит, которым МПр может обмениваться с другими элементами ЭВМ.

  1. Рабочее напряжение процессора обеспечивается материнской платой, поэтому разным маркам процессоров соответствуют разные материнские платы. Рабочее напряжение процессоров не превышает 3 В. Снижение рабочего напряжения позволяет уменьшить размеры МП, а также уменьшить тепловыделение в МП, что повышает его производительность без угрозы перегрева.

  1. Помимо указанных выше факторов производительность МПр зависит от технологии обработки команд и данных. В составе современных МПр имеются несколько исполнительных устройств. Это позволяет одновременно обрабатывать несколько инструкций. Обработка ведется в так называемом конвейерном режиме. Для повышения эффективности заполняемости конвейеров предусмотрен механизм предсказания того, какая инструкция должна обрабатываться следующей.

6. Особенности архитектуры

Многоядерный процессор — центральный процессор, содержащий два и более вычислительных ядра на одном процессорном кристалле или в одном корпусе.

В настоящее время существуют 2, 4, 6, 8 ядерные процессоры.

Первый многоядерный чип был выпущен в 2001 году.

в мае 2005-го- двухъядерный 64-битным микропроцессор

2012год

Если речь идет об абсолютной мощности центрального процессора вне зависимости от его стоимости, здесь нет равных современным чипам от компании Intel. Если же мы попробуем теоретически подсчитать эффективность работы конкретного £ CPU от каждой затраченной на его покупку копейки, то выиграют как раз модели производства AMD в целом и шестиядерный AMD Phenom II Х6 1100Т Black Edition в частности.

2014 год файл 2

Системная шина

В основе устройства ЭВМ лежит системная шина, которая служит для обмена командами и данными между компонентами ЭВМ, расположенными на материнской плате. ПУ подключаются к шине через контроллеры. Такая архитектура ЭВМ называется открытой, так как легко может быть расширена за счет подключения новых устройств. Передача информации по системной шине также осуществляется по тактам.

Системная шина включает в себя:

кодовую шину данных для параллельной передачи всех разрядов числового кода (машинного слова) операнда из ОЗУ в МПП и обратно; имеет 64 разряда;

кодовую шину адреса для параллельной передачи всех разрядов адреса ячейки ОЗУ; имеет 32 разряда;

кодовую шину инструкций для передачи команд (управляющих сигналов, импульсов) во все блоки ЭВМ; простые команды кодируются одним байтом, но есть и команды, кодируемые двумя, тремя и более байтами; имеет 32 разряда;

шину питания для подключения блоков ЭВМ к системе энергопитания.

Системная шина обеспечивает три направления передачи информации:

1) между МП и ОЗУ;

2) между МП и контроллерами устройств;

3) между ОЗУ и внешними устройствами (ВЗУ и ПУ, в режиме прямого доступа к памяти).

Все устройства подключаются к системной шине через контроллеры – устройства, которые обеспечивают взаимодействие внешних устройств и системной шины.

Чтобы освободить МП от управления обменом информацией между ОЗУ и внешними устройствами, например при чтении или записи информации, предусмотрен режим прямого доступа в память (DMA – Direct Memory Access). Таким образом, МП может заниматься выполнением других команд, не отвлекаясь на копирование информации между ОЗУ и внешними устройствами.

Характеристиками системной шины являются количество обслуживаемых ею устройств и ее пропускная способность, то есть максимально возможная скорость передачи информации. Пропускная способность шины зависит от следующих параметров:

разрядность или ширина шины – количество бит, которое может быть передано по шине одновременно (существуют 8-, 16-, 32- и 64-разрядные шины);

тактовая частота шины – частота, с которой передаются биты информации по шине.

Основные характеристики шин

Характеристика

PCI

AGP

Разрядность шины данных/адреса, бит

32/32

32/32

Рабочая частота, МГц

66

133

Пропускная способность, Мбит/с

264

2112

Число подключаемых устройств, шт.

10

1

Постоянное и оперативное ЗУ

Запоминающие устройства, используемые в ЭВМ, состоят из последовательности ячеек. Каждая ячейка содержит значение одного байта и имеет собственный номер (адрес), по которому происходит обращение к ее содержимому. Все данные в ЭВМ хранятся в двоичном виде нулей и единиц.

Запоминающие устройства характеризуются двумя параметрами:

объем памяти – размер в байтах, доступных для хранения информации;

- время доступа к ячейкам памяти – средний временной интервал, в течение которого находится требуемая ячейка памяти и из нее извлекаются данные.

Оперативное запоминающее устройство (ОЗУ; RAM – Random Access Memory) предназначено для оперативной записи, хранения и чтения информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом ЭВМ в текущий период времени. После выключения питания ЭВМ, информация в ОЗУ уничтожается, поэтому она не подходит для долговременного хранения информации. Каждая ячейка памяти имеет свой адрес, выраженный числом. В ЭВМ на базе процессоров Intel Pentium используется 32-разрядная адресация. Это означает, что число независимых адресов равно 232, то есть возможное адресное пространство составляет 4,3 Гбайт. Объем ОЗУ превышает 4096 Мбайт (2011 г.), время доступа 0,005-0,02 мкс. 1 с = 106 мкс.

Постоянное запоминающее устройство (ПЗУ; ROM – Read Only Memory) хранит неизменяемую (постоянную) информацию: программы, выполняемые во время загрузки системы, и постоянные параметры ЭВМ. В момент включения ЭВМ в его ОЗУ отсутствуют данные, так как ОЗУ не сохраняет данные после выключения ЭВМ. Но МП необходимы команды, в том числе и сразу после включения. Поэтому МП обращается по специальному стартовому адресу, который ему всегда известен, за своей первой командой. Этот адрес из ПЗУ. Основное назначение программ из ПЗУ состоит в том, чтобы проверить состав и работоспособность системы и обеспечить взаимодействие с клавиатурой, монитором, жесткими и гибкими дисками. Обычно изменить информацию ПЗУ нельзя. Объем ПЗУ 128-256 Кбайт, время доступа 0,035-0,1 мкс. Так как объем ПЗУ небольшой, но время доступа больше, чем у ОЗУ, при запуске все содержимое ПЗУ считывается в специально выделенную область ОЗУ.

Кроме ПЗУ существует энергонезависимая память CMOS RAM (Complementary Metal-Oxide Semiconductor RAM), в которой хранятся данные об аппаратной конфигурации ЭВМ: о подключенных к ЭВМ устройствах и их параметры, параметры загрузки, пароль на вход в систему, текущее время и дата. Питание памяти CMOS RAM осуществляется от батарейки. Если заряд батарейки заканчивается, то настройки, хранящиеся в памяти CMOS RAM, сбрасываются, и ЭВМ использует настройки по умолчанию.

ПЗУ и память CMOS RAM составляют базовую систему ввода-вывода (BIOSBasic Input-Output System).

Внешние ЗУ

Внешние запоминающие устройства (ВЗУ) предназначены для долговременного хранения и транспортировки информации. ВЗУ взаимодействуют с системной шиной через контроллеры внешних запоминающих устройств (КВЗУ). КВЗУ обеспечивают интерфейс ВЗУ и системной шины в режиме прямого доступа к памяти, то есть без участия МП.

ВЗУ можно разделить по критерию транспортировки на переносные и стационарные.

Переносные ВЗУ состоят из носителя, подключаемого к порту ввода-вывода (обычно USB), (флэш-память) или носителя и привода (накопители на гибких магнитных дисках, приводы CD и DVD).

В стационарных ВЗУ носитель и привод объединены в единое устройство (накопитель на жестких магнитных дисках). Стационарные ВЗУ предназначены для хранения информации внутри ЭВМ.

Перед первым использованием или в случае сбоев ВЗУ необходимо отформатировать – записать на носитель служебную информацию, необходимую в дальнейшем при операциях чтения-записи с носителя.

Рассмотрим три типа ВЗУ, разделенные по критерию физической основы или технологии производства носителя:

1) магнитные носители;

2) оптические носители;

3) флэш-память.

Магнитные носители

Магнитные носители основаны на свойстве материалов находиться в двух состояниях: «не намагничено»-«намагничено», кодирующие 0 и 1. По поверхности носителя перемещается головка, которая может считывать состояние или изменять его. Запись данных на магнитный носитель осуществляется следующим образом. При изменении силы тока, проходящего через головку, происходит изменение напряженности динамического магнитного поля на поверхности магнитного носителя, и состояние ячейки меняется с «не намагничено» на «намагничено» или наоборот. Операция считывания происходит в обратном порядке. Из-за контакта головки с поверхностью носителя через некоторое время носитель приходит в негодность.

Рассмотрим три типа магнитных носителей.

1. Накопители на жестких магнитных дисках (НЖМД; harddisk – жесткий диск) представляют собой несколько дисков с магнитным покрытием, нанизанные на шпиндель, в герметичном металлическом корпусе. При вращении диска происходит быстрый доступ головки к любой части диска.

В НЖМД может быть до десяти дисков. Их поверхность размечается дорожками (track). Каждая дорожка имеет свой номер. Дорожки с одинаковыми номерами, расположенные одна над другой на разных дисках образуют цилиндр. Дорожки на диске разбиты на секторы (нумерация начинается с единицы). Сектор занимает 571 байт. Из них 512 байт отведено для записи данных. Оставшиеся 59 байт отведены под заголовок (префикс), определяющий начало и номер сектора и окончание (суффикс), где записана контрольная сумма, необходимая для проверки целостности хранимых данных. Секторы и дорожки формируются во время форматирования диска. Разметка секторов зависит от типа диска. Жесткие диски устанавливаются в системном блоке и являются основным ВЗУ ЭВМ. Объем жестких дисков превышает 1 Тбайт (2011 г.), а время доступа – 0,005-0,03 с.

2. Накопители на гибких магнитных дисках (НГМД; FDD – Floppy Disk Drive) предназначены для записи информации на переносные носители – дискеты. Дискета представляет собой гибкий диск с магнитным покрытием, помещенный в жесткий корпус со шторкой, открываемой для доступа головки к диску, и прорезью для защиты от записи. Как и в случае жесткого диска, поверхность гибкого диска разбивается на дорожки, которые в свою очередь разбиваются на секторы. Секторы и дорожки формируются во время форматирования дискеты. Дискеты могут быть двух размеров 5,25 дюймов (133 мм; является устаревшим) и 3,5 дюймов (89 мм). Для каждого типа дискеты нужен свой НГМД. Объем дискет – до 1,44 Мбайт, время доступа – 0,065-0,1 с. В настоящее время НГМД вытеснены флэш-памятью.

3. Дисковые массивы RAID (Redundant Array of Inexpensive Disks – массив недорогих дисков с избыточностью) используются для хранения данных в суперкомпьютерах (мощных ЭВМ предназначенных для решения крупных вычислительных задач) и серверах (подключенных к сети ЭВМ, предоставляющих доступ к хранящимся в них данным). Массивы RAID – это несколько запоминающих устройств на жестких дисках, объединенные в один большой накопитель, обслуживаемый специальным RAID-контроллером. Одна и та же информация хранится на различных жестких дисках и при потере информации на одном жестком диске восстанавливает ее с другого жесткого диска. RAID-массивы поддерживают технологию Plug and Play, то есть замену одного из дисков без остановки всего массива.

Оптические носители

Оптические носители представляют собой компакт-диски диаметром 12 см (4,72 дюйма) или мини-диски диаметром 8 см (3,15 дюйма).

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5183
Авторов
на СтудИзбе
435
Средний доход
с одного платного файла
Обучение Подробнее