Главная » Все файлы » Просмотр файлов из архивов » Документы » Часть3(Оптика.Элементы кв. механики)

Часть3(Оптика.Элементы кв. механики) (Лекции по физике 3 семестр), страница 9

2017-07-10СтудИзба

Описание файла

Файл "Часть3(Оптика.Элементы кв. механики)" внутри архива находится в папке "Лекции по физике 3 семестр". Документ из архива "Лекции по физике 3 семестр", который расположен в категории "". Всё это находится в предмете "физика" из 3 семестр, которые можно найти в файловом архиве РТУ МИРЭА. Не смотря на прямую связь этого архива с РТУ МИРЭА, его также можно найти и в других разделах. Архив можно найти в разделе "лекции и семинары", в предмете "физика" в общих файлах.

Онлайн просмотр документа "Часть3(Оптика.Элементы кв. механики)"

Текст 9 страницы из документа "Часть3(Оптика.Элементы кв. механики)"

Предположим, что электрон движется вокруг ядра по круговой орбите радиуса r. При этом кулоновская сила взаимодействия между электроном и ядром сообщает электрону нормальное (центростремительное) ускорение, определяемое из второго закона Ньютона.

. (1)

При r = 1А из (1) находим, что аn 1022м/с2. Согласно классической электродинамике, ускоренно движущиеся электроны должны излучать электромагнитные волны (см. параграф 2.4.) и вследствие этого терять энергию. В результате электроны будут приближаться к ядру и, в конце концов, упадут на него, что противоречит действительности.

Выход из создавшего тупика был найден в 1913 г. Нильсом Бором, который сформулировал 2 постулата, противоречащие классическим представлениям.

11.2. Постулаты Бора

1. Первый постулат заключается в следующем:

Существуют только некоторые стационарные состояния атома, находясь в которых он не излучает энергию. Этим стационарным состояниям соответствуют вполне определенные (стационарные) орбиты, по которым движется электроны. При движении по стационарным орбитам электроны, несмотря на наличие у них ускорения, не излучают электромагнитных волн.

В стационарном состоянии атома электрон должен иметь дискретные (квантованные) значения момента импульса

Ln = mrv = n , n = 1, 2, ... (2)

Здесь m, v – масса и скорость электрона, r – радиус его орбиты. С учетом (1) и (2) находим радиусы стационарных орбит электронов

. (3)

Для атома водорода (Z=1) радиус первой орбиты электрона при n = 1, называемый первым боровским радиусом (а), равен

r1 = a = 0,528 А. (4)

внутренняя энергия атома слагается из кинетической энергии электрона (Т = mv2/2) и потенциальной энергии взаимодействия электрона с ядром (U =-Ze2/(40r)),

(5)

при выводе формулы (5) учли формулу (1). Подставляя в (5) квантовые радиусы орбит электронов (3), получим, что энергия атома (которая равна энергии электрона, так как ядро атома неподвижно) может принимать только следующие дозволенные дискретные (квантовые) значения

(6)

или

где знак минус означает, что электрон находится в связанном состоянии. (В атомной физике энергия измеряется в электронвольтах, 1 эВ = 1,610-19Дж).

2. Второй постулат устанавливает:

При переходе атома (электрона) из одного стационарного состояния в другое испускается или поглощается один фотон с энергией

, (7)

где Еn, Еm – энергии атома (электрона) в стационарных состояниях n и m, которые определяются согласно (6).

Исходя из своих постулатов Бор создал полуклассическую теорию простейшего водородоподобного атома и объяснил линейчатый спектр атом водорода. К водородоподобным атомам относятся атом водорода (z=1), ион гелия Не+ (z=2), ион лития Li++ (Z=3) и др. Для них характерно, что вокруг ядра с зарядом = Ze вращается только один электрон.

11.3. Линейчатый спектр атома водорода

Спектр излучения атомарного водорода состоит из отдельных спектральных линий, которые располагаются в определенном порядке. В 1885 г. Бальмер установил, что длины волн (или частоты) этих линий могут быть представлены формулой. Действительно, из (7) с учетом (6) для водорода (Z = 1), следует, что

, (8)

где R = 2,07 1016 с -1 – постоянная Ридберга. Учитывая, что 1/ = v/с = /2с и используя (8), найдем

, (9)

где R =1,0974107 м-1 – называется также постоянной Ридберга.

На рис. 1 изображена схема энергетических уровней атома водорода, рассчитанных согласно (6) при z = 1.

При переходе электрона с более высоких энергетических уровней на уровень n=1 возникает ультрафиолетовое излучение или излучение серии Лаймана (СЛ).

Еn, эВ

0 n = 

-0,85

n = 4

n = 3

-1,51

СП

n = 2

-3,4


СБ

Рис. 1


n = 1

-13,6


СЛ

Когда электроны переходя на уровень n = 2 возникает видимое излучение или излучение серии Бальмера (СБ). При переходе электронов с более высоких уровней на уровень n = 3 возникает инфракрасное излучение, или излучение серии Пашена (СП) и т.д.

Частоты или длины волн, возникающего при этом излучения, определяются по формулам (8) или (9) при m=1 – для серии Лаймана, при m=2 – для серии Бальмера и при m = 3 – для серии Пашена. Энергия фотонов определяется по формуле (7), которую с учетом (6) можно привести для водородоподобных атомов к виду:

, эВ (10)

Теория Бора сыграла огромную роль в создании атомной физики. В период ее развития (1913 – 1925 г.) были сделаны важные открытия, например, в области атомной спектроскопии. Однако в теории Бора обнаружились существенные недостатки, например, с ее помощью невозможно создать теорию более сложных, чем атом водорода, атомов. Поэтому становилось очевидным, что теория Бора представляет собой переходной этап на пути создания последовательной теории атомных и ядерных явлений. Такой последовательной теорией явилась квантовая (волновая) механика.

11.4 Атом водорода согласно квантовой механики. Квантовые числа электрона в атоме

Результаты, полученные согласно теории Бора в решении задачи об энергетических уровнях электрона в водородоподобных атомах, получены в квантовой механике без привлечения постулатов Бора. Покажем это.

Состояние электрона в водородоподобном атоме описывается некоторой волновой функцией , удовлетворяющей стационарному уравнению Шредингера [см.(9.22)]. Учитывая, что потенциальная энергия электрона

(11)

где r – расстояние между электроном и ядром, получим уравнение Шредингера в виде

(12)

Целесообразно воспользоваться сферической системой координат r, , и искать решение этого уравнения в виде следующих собственных функций

(13)

где n, l, m – целочисленные параметры собственных функций. При этом n – называют главным квантовым числом, l – орбитальным (азимутальным) и m – магнитным квантовым числом.

Доказывается, что уравнение (12) имеет решение только при дискретных отрицательных значениях энергии

, (14)

где n = 1, 2, 3,... – главные квантовые числа.

Сравнение с выражением (6) показывает, что квантовая механика приводит к таким же значениям энергии, какие получились и в теории Бора. Однако в квантовой механике эти значения получаются как следствие основных положений этой науки.

Подставив в (14 ) Z = 1 и приняв n = 1, получим значение энергии основного состояния (т.е. состояния с наименьшей энергией) атома водорода

эВ. (15)

Из решения (13) уравнения Шредингера (12) также следует, что момент импульса электрона в атоме квантуется по формуле

(16)

где l= 0, 1, 2, ... (n-1) – орбитальное (азимутальное) квантовое число.

Проекция момента импульса L электрона на направление Z магнитного поля может принимать лишь целочисленные значения, кратные (пространственное квантование) т.е.

(17)

m – называют магнитным квантовым числом. При данном магнитное квантовое число может принимать различных значений.

Lz

0

-





l=1 l=2 Рис. 2

Опыт Штерна и Герлаха, а также более ранние эксперименты привели Уленбека и Гаудсмита к гипотезе существования у электрона собственного момента импульса, который был назван спин (spin – верчение).

Первоначально предполагалось, что спин обусловлен вращением электрона вокруг своей оси. Позднее было показано, что спин имеет квантовую природу. Спин следует считать внутренним свойством, присущим электрону, подобно тому, как ему присущ и заряд и масса.

Собственный момент импульса электрона LS (спин) выражается через спиновое квантовое число s равное 1/2, т.е. спин квантуется по закону

.

Проекция спина на заданное направление z может принимать два квантованных значения

,

где ms = s = 1/2 называют магнитным спиновым квантовым числом или просто спиновым квантовым числом, т.е. также как и s.

11.5. Принцип Паули

Итак, состояние каждого электрона в атоме характеризуется четырьмя квантовыми числами:

  1. Главное квантовое число n (n = 1, 2 ... ).

  2. Орбитальное (азимутальное) квантовое число l (l = 0, 1, 2, ... n-1)

  3. Магнитное квантовое число m (m = 0, 1, 2, ... l)

  4. Спиновое квантовое число ms (ms =  1/2 ).

Для одного фиксированного значения главного квантового числа n существует 2n2 различных квантовых состояний электрона.

Один из законов квантовой механики, называемый принципом Паули, утверждает:

В одном и том же атоме не может быть двух электронов, обладающих одинаковым набором квантовых чисел, (т.е. не может быть двух электронов в одинаковом состоянии).

Принцип Паули дает объяснение периодической повторяемости свойств атома, т.е. периодической системе элементов Менделеева.

Де Бройль связал со свободно движущейся частицей плоскую волну. Известно [cм. (1.5), (1.6)], что плоская волна, распространяющаяся в направлении оси х описывается уравнением S=Acos(t- kх+О)

или в экспоненциальной форме S=АOехр[i(t- kх+О)].

Заменив в соответствии с (1) и (2) и k=2/ через Е и p, уравнение волны де Бройля для свободной частицы пишут в виде

=АOехр[(-i/ )(Еt- pх)] (16)

(в квантовой механике показатель экспоненты берут со знаком минус, но поскольку физический смысл имеет  2, то это [cм. (16)] несущественно).

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее