Главная » Все файлы » Просмотр файлов из архивов » Документы » Часть3(Оптика.Элементы кв. механики)

Часть3(Оптика.Элементы кв. механики) (Лекции по физике 3 семестр), страница 2

2017-07-10СтудИзба

Описание файла

Файл "Часть3(Оптика.Элементы кв. механики)" внутри архива находится в папке "Лекции по физике 3 семестр". Документ из архива "Лекции по физике 3 семестр", который расположен в категории "". Всё это находится в предмете "физика" из 3 семестр, которые можно найти в файловом архиве РТУ МИРЭА. Не смотря на прямую связь этого архива с РТУ МИРЭА, его также можно найти и в других разделах. Архив можно найти в разделе "лекции и семинары", в предмете "физика" в общих файлах.

Онлайн просмотр документа "Часть3(Оптика.Элементы кв. механики)"

Текст 2 страницы из документа "Часть3(Оптика.Элементы кв. механики)"

Во второй части курса физики изучались уравнения Максвелла, которые в дифференциальной форме (т.е. справедливые для бесконечно малого объема среды) имели вид:

(1)

где и – векторы напряженности электрического и магнитного полей, которые измеряются соответственно в В/м и А/м; – вектор магнитной индукции (Тл), – вектор электрического смещения (Кл/м2), – вектор плотности тока проводимости (А/м2), – объемная плотность заряда (Кл/м3).

Кроме того, необходимо учитывать, что

(2)

где 0=1/(49109) Ф/м, 0=410-7Гн/м – электрическая и магнитная постоянные; ε, μ – диэлектрическая и магнитная проницаемости среды; – удельная электропроводность среды (величина, обратная удельному сопротивлению), а также, что

, (3)

c – скорость света в вакууме, с = 3108 м/с.

Скорость распространения электромагнитных волн в среде

, (4)

где , (5)

n – абсолютный показатель преломления среды, он показывает, во сколько раз скорость света v в среде меньше скорости света в вакууме с.

Из первого уравнения Максвелла следует, что переменное (изменяющееся во времени) магнитное поле вызывает переменное электрическое поле, а оно [согласно второму уравнению (1)], изменяясь, вызывает магнитное поле и т.д. Нельзя создать только электрическое поле, не вызвав магнитного поля и наоборот. Т.е. электрическое и магнитное поля взаимосвязаны. Они образуют единое электромагнитное поле, которое распространяется в пространстве (среде) в виде электромагнитных волн.

2.1. Волновые уравнения

Электромагнитные волны удовлетворяют уравнениям аналогичным (1.9)*, которые выводятся из уравнений Максвелла с применением векторного равенства

Для линейной однородной изотропной среды при отсутствии токов ( ) и зарядов (=0) волновые уравнения для векторов и имеют вид

, , (6)

где и – операторы Лапласа, примененные к векторам и соответственно, они выражаются через операторы Лапласа от скалярных функций

(7)

где – единичные векторы (орты).

В (1.10) приведено выражение для оператора Лапласа, примененного к скалярной функции. Будем далее предполагать, что электромагнитная волна распространяется в направлении оси x (см. рис. 1) со скоростью и при этом вектор колеблется в одной плоскости, например, в плоскости xoy (эту плоскость называют плоскостью поляризации). Тогда вектор будет колебаться в перпендикулярной к ней плоскости xoz [это следует из двух первых уравнений (1)], т.е. в такой линейно поляризованной волне векторы и имеют только по одной составляющей, т.е. .

Следует заметить, что векторы , и образуют правую тройку взаимноперпендикулярных векторов (т.е. направление вектора совпадает с направлением поступательного движения правого буравчика, рукоятка которого вращается от к по наикратчайшему пути).

Для такой линейно поляризованной волны волновые уравнения (6) упростятся и примут вид

, , (8)

где индексы y и z при Е и Н подчеркивают лишь то, что векторы и направлены вдоль взаимно перпендикулярных осей y и z.

2.2. Уравнение плоской гармонической волны

Уравнениям (8) удовлетворяют, в частности, плоские электромагнитные гармонические волны, описываемые уравнениями

(9)

где Е0, Н0 – амплитуды напряженностей электрического и магнитного полей; =2/Т=2 – круговая частота (с-1); Т – период колебаний (с); =1– частота колебаний (Гц); k=/v=2/ – волновое число; v – скорость распространения волны, для нее скорость переноса энергии (групповая скорость) u равна фазовой скорости v этой волны [см.(1.14)]; =vT – длина волны, для вакуума

=сT=с/, (10)

0 – начальные фазы колебаний в точках с координатой x = 0.

В уравнениях гармонической волны (9) 0 – одинаково, т.к. колебания электрического и магнитного векторов в электромагнитной волне происходят в одинаковой фазе [это следует из (1)].

На рис.2. показаны векторы и поля плоской линейно поляризованной волны в различных точках луча (оси ох) в один и тот же момент времени. Плоскость, проходящая через электрический вектор и луч (или вектор ), называется плоскостью поляризации.

Электромагнитную гармоническую волну часто записывают в экспоненциальной (комплексной) форме аналогично (1.6), где вместо s и А0 будет Е и Е0, Н и Н0 соответственно для электрического и магнитного векторов.

Электромагнитная волна так же, как упругая волна (см. параграф 1.3) характеризуется фронтом волны, волновой поверхностью. В отличие от упругих волн, которые распространяются только в среде (в вакууме упругие волны не могут распространяться, т.к. в нем нет частиц, которые совершали бы колебания), электромагнитные волны распространяются не только в среде, но и в вакууме, т.к. они представляют собой процесс распространения колебаний векторов и в пространстве.

Как и в случае упругих волн по форме волновых поверхностей или волновому фронту различают плоские, сферические, цилиндрические и прочие электромагнитные волны.

Обычно в практике используются пучки электромагнитной энергии (света) конечного поперечного сечения. Конечный, но достаточно узкий пучок будем называть лучом. Луч всегда перпендикулярен волновому фронту.

Из уравнений Максвелла (1) следует, что электромагнитные волны являются поперечными волнами, т.к. векторы и колеблются перпендикулярно к направлению распространения волны (см. рис. 1 и 2).

Из (1) также следует, что , (11)

2.3. Энергия электромагнитной волны

Объемная плотность энергии электромагнитного поля в линейной изотропной среде равна сумме объемных плотностей энергии электрического и магнитного полей [см. Конспект лекций по физике, ч.II, формулы (5.17) и (11.17) соответственно], поэтому

(12)

С учетом соотношений (11) и (4) из (12) следует, что

, (13)

где v – скорость распространения электромагнитной волны в среде.

В случае плоской линейно поляризованной монохроматической волны (9) объемная плотность энергии волны

(14)

т.е значение w в каждой точке поля периодически изменяется от 0 до wмакс=Е0Н0/v за промежуток времени   .

Среднее значение объемной плотности энергии волны

(15)

Умножив w [см.(13)] на v, получим величину плотности потока энергии

S=wv=EH . (16)

Т.к. векторы , и взаимно перпендикулярны и образуют правую тройку векторов, то направление вектора совпадает с направлением переноса энергии – с направлением вектора . Поэтому (16) можно записать в векторной форме

. (17)

Вектор плотности потока энергии (иногда обозначают ) направлен в сторону распространения электромагнитной волны, а его модуль равен энергии, переносимой волной за единицу времени, через единичную площадку, перпендикулярную направлению распространения волны [см. в параграфе 1.6 рис. 2 и формулы (17), (18)]. S измеряется в Дж/(см2)=Вт/м2.

Заметим, что в общем случае , (18)

где u – скорость переноса энергии или групповая скорость.

Для гармонических волн u=v [см.(1.14)] и поэтому можно не различать их.

Интенсивность волны (19)

С учетом (15 ), (11) следует, что для вакуума ()

W0, (20)

где W0=(0 0)-1/2 =120 Ом.

2.4.Излучение электрического диполя

Согласно представлениям классической электродинамики, электромагнитные волны возбуждаются электрическими зарядами, движущимися с ускорением, в частности, электрической цепью (проводом), ток в которой изменяется.

Простейшей излучательной системой является электрический диполь, момент которого (см. параграф 1.5 в конспекте лекций, ч.II) изменяется с течением времени по гармоническому закону p=p0cost, (21)

где р0=ql0 – амплитудное значение момента диполя.

С редняя мощность, излученная диполем за промежуток времени T=2

, (22)

т.е. пропорциональна квадрату дипольного момента и четвертой степени круговой частоты. При этом диполь излучает не одинаково в различных направлениях. Интенсивность излучения в волновой зоне (т.е. при r>>l0 и r>>)

I~ sin2/r2. (23)

На рис. 3 приведена зависимость I() при фиксированном расстоянии от диполя r. Эту зависимость называют диаграммой направленности излучения диполя. Из нее следует, что диполь всего сильнее излучает в направлениях =2 и 32, а вдоль оси диполя ( = 0, ) диполь не излучает совсем.

Рассмотренные выше результаты были использованы в приближенной классической теории излучения атомов, согласно которой это излучение обусловлено колебаниями электронов около их положения равновесия в атомах. В этом случае в формулах (21), (22) p0=еl0 .

Итак, движущийся ускоренно электрон в атоме обладает механической энергией W=mv2/2=m2l02/2, которую он излучает. В связи с этим колебания электрона являются затухающими. Амплитуда колебаний электрона l0 c течением времени уменьшается по закону l0=l00exp(-t), где – коэффициент затухания, обусловленного излучением энергии.

Промежуток времени , за который амплитуда колебаний электрона l0 уменьшается в е раз (е  2,72) называют иногда средним временем жизни излучающего атома. Можно показать, что ~ 2 и, например, для =510-7 м, соответствующей зеленому свету = 2,2510-8 с. (24)

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее