85430 (Нелокальная краевая задача для уравнения смешанного типа третьего порядка с кратными характеристиками)

2016-08-02СтудИзба

Описание файла

Документ из архива "Нелокальная краевая задача для уравнения смешанного типа третьего порядка с кратными характеристиками", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85430"

Текст из документа "85430"

Нелокальная краевая задача для уравнения смешанного типа третьего порядка с кратными характеристиками

Езаова А.Г.

Кафедра теории функций.

Кабардино-Балкарский государственный университет

В работе рассматривается нелокальная краевая задача для уравнения смешанного типа. Поставленная задача сводится к сингулярному интегральному уравнению, которое методом Карлемана-Векуа редуцируется к интегральному уравнению Фредгольма третьего рода.

Рассмотрим уравнение

(1)

где m – натуральное число в конечной односвязной области , ограниченной отрезками

прямых

соответственно – и характеристиками:

уравнения (1).

Пусть ;

– интервал

прямой

;

– аффиксы точек пересечения характеристик уравнения (1) при , выходящих из точки

, с характеристиками

и

соответственно;

(2)

(3)

– операторы дробного интегрирования порядка - при

и обобщенные в смысле Лиувилля производные порядка

при

, причем

где – единичный оператор, а

– целая часть

.

Под регулярным в области решением уравнения (1) будем понимать функцию

, удовлетворяющую уравнению (1) в

, и такую, что

может обращаться в бесконечность порядка ниже

на концах А и В интервала I.

Задача Н . Найти регулярное в области

решение

уравнения (1), удовлетворяющее краевым условиям:

, (4)

, (5)

где ,

(5`)

. (6)

Пусть существует решение задачи . Тогда, регулярное решение уравнения (1) в гиперболической части

, удовлетворяющее данным Коши

, дается формулой [1]:

(7)

Удовлетворяя (7) краевому условию (5), получим функциональное соотношение между функциями и

, принесенное на

из

[2]:

, (8)

где

(9)

Из постановки задачи Н следует, что функция

непрерывна в области

. Поэтому, переходя к пределу при

в уравнении (1) и учитывая граничные условия (4), получим:

, (10)

. (11)

Решая задачу (10), (11) относительно , окончательно получим функциональное соотношение между функциями

и

, принесенное из области

на

:

(12)

Подставляя в (9) вместо функции её выражение (12), получаем :

где

.

Используя формулу Дирихле перестановки порядка интегрирования, перепишем равенство (13) в виде:

(14)

Следуя [2], преобразуем интегралы:

,

,

,

,

.

В интегралах сделаем подстановки

1) ; 2)

; 3)

;

4) ; 5)

соответственно. В результате получим равенства:

,

Подставляя значения в равенство (14) и делая несложные преобразования, получаем:

(15)

Учитывая (15) в равенстве (7), будем иметь:

(16)

где обозначено

(17)

2 Труды молодых ученых № 3, 2007

(18)

(19)

Введем вспомогательную функцию по формуле :

(20)

Легко заметить, что функция и в точке x=0 обращается в нуль порядка выше , а при x=1 может обращаться в бесконечность порядка выше (1-) относительно x и (1-x) соответственно. Из равенства (20) однозначно определяется функция

:

(21)

Учитывая значение функции из равенства (21), в интегралах в правой части (16) получаем:

.

Обозначим

. (22)

Тогда окончательно имеем:

.

Аналогично находим, что

,

где обозначено , (23)

; (24)

. (25)

Используя известное тождество [3],

,

где интеграл понимается в смысле главного значения по Коши, уравнение (16) с учетом (5`), (17) – (19), (22) – (25) и делая несложные преобразования, приводится к сингулярному интегральному уравнению [1, 3]:

(26)

где сингулярный оператор S задаётся формулой:

,

,

,

,

,

,

– известные функции, ограниченные соответственно на 0 t x 1, 0 x t 1, 0 x 1, причем

,

.

Производя регуляризацию уравнения (26) по методу Карлемана – Векуа [4] и делая несложные преобразования, оно приводится к интегральному уравнению Фредгольма третьего рода [2]:

, (27)

где причем ядро

и функция

ограниченные соответственно при, 0 x, t 1, 0 x 1.

Следуя [2], обозначим через – множество функций

, непрерывных всюду кроме быть может точек x=0, (x=1) и удовлетворяющих условию

где

,

– целая часть

,

– целая часть

[1].

В работе [2] найдены необходимые и достаточные условия существования решения уравнения (27) в классе .

Функция , определенная формулой (21), принадлежит классу искомых решений интегрального уравнения (8).

После определения , функция

задаётся формулой (12). Таким образом, в области

приходим к задаче [6]: найти регулярное в области

решение уравнения (1), непрерывное вместе с производной

в замкнутой области

и удовлетворяющее граничным условиям (4) и

.

Решение этой задачи задается формулой :

где – функция Грина этой задачи для уравнения

. (28)

Функция Грина выражается через фундаментальные решения уравнения (28), которые имеют вид:

где ;

;

– функция Бесселя. Функции

,

называются функциями Эйри и удовлетворяют уравнению

. Основные свойства функций

и

, их оценки вместе с частными производными порядка больше 1, приведены в [7].

Список литературы

Бицадзе А.В. Некоторые классы уравнений в частных производных. М.: Наука, 1981.

Бжихатлов Х.Г., Карасев И.М., Лесковский И.П., Нахушев А.М. Избранные вопросы дифференциальных и интегральных уравнений. Нальчик. 1972.

Wolfersdorf L. Mfth. Zeitschr., 90,1,1965.

Езаова А.Г. Краевая задача для одного уравнения третьего порядка с кратными характеристиками.// Нальчик, вестник КБГУ, серия «математические науки». Вып. 3, 2003.

Мусхелишвили Н.И. Сингулярные интегральные уравнения. М., Наука, 1968.

Джураев Т.Д. Краевые задачи для уравнений смешанного и смешанно- составного типов. Ташкент, Фан, 1979.

Kattabriga L. Un problem al kontrono per ulna education did or dine despair // Anal Della scholar normal did pisafisa mat. 1959. №2.

Для подготовки данной работы были использованы материалы с сайта http://www.skgtu.ru/

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
427
Средний доход
с одного платного файла
Обучение Подробнее