85268 (Сопряжённые числа), страница 2

2016-08-02СтудИзба

Описание файла

Документ из архива "Сопряжённые числа", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85268"

Текст 2 страницы из документа "85268"

Перемножив два последних равенства, получим

x

2

n

– 2y

2

n

= (–1)n,

и интересующее нас выражение попеременно равно то 1, то –1. Складывая и вычитая эти же два равенства, мы получим явное выражение для xn и yn:

xn =

(1 + √2)n + (1 – √2)n

2

,

yn =

(1 + √2)n – (1 – √2)n

2√2

.

Можно ли в решении этой задачи про целые числа обойтись без иррациональных чисел 1 + √2 и 1 – √2? Теперь, зная ответ, мы можем легко выразить (xn+1; yn+1) через предыдущую пару (xn; yn): из xn+1 + yn+1√2 = (xn + yn√2)(1 + √2) вытекает

xn+1 = xn + 2yn, yn+1 = xn + yn.

(6)

До этого рекуррентного соотношения можно было, видимо, догадаться по нескольким первым решениям, а потом проверить, что

| x

2

n

– 2y

2

n

| = | x

2

n+1

– 2y

2

n+1

| .

Добавив начальное условие x1 = 1, y1 = 1, отсюда (по индукции) можно было бы заключить, что |xn2 – 2yn2| = 1 для любого n. Далее, выразив обратно (xn; yn): через (xn+1; yn+1), «методом спуска» ([8]) можно доказать, что найденной серией исчерпываются все решения уравнения (5) в натуральных числах (x; y). Подобным же образом решается любое «уравнение Пелля» x2 – dy2 = c (а к уравнениям такого типа сводится любое квадратное уравнение в целых числах x, y), но у исходного уравнения может быть несколько серий решений ([7]).

Рекуррентные соотношения типа (6) возникают не только в теории чисел, но и в разных задачах анализа, теории вероятностей. Вот характерный пример комбинаторной задачи такого типа (она предлагалась на последней международной олимпиаде в Лондоне):

7 (М595). В вершине A правильного восьмиугольника сидит лягушка. Из любой вершины восьмиугольника, кроме вершины E, противоположной A, она может прыгнуть в любую из двух соседних вершин. Попав в E, лягушка останавливается и остаётся там. Найти количество em различных способов, которыми лягушка может попасть из вершины A в E ровно за m прыжков.

Если раскрасить вершины восьмиугольника через одну в чёрный и белый цвет (рис. 2), сразу станет ясно, что e2k–1 = 0 при любом k: цвет вершин при каждом прыжке меняется. Обозначим через an и cn количество способов, которым лягушка может за 2n прыжков, попасть из вершины A, соответственно, в вершину A и в одну из вершин C (из соображений симметрии ясно, что в каждую из вершин, обозначенных на рисунке буквой C, можно попасть одним и тем же числом способов). Как легко проверить (см. рис.2а,б,в,г),

a1 = 2, c1 = 1;

an+1 = 2an + 2cn,

cn+1 = an + 2cn.

(7)

А интересующее нас число e2n равно, очевидно, 2cn–1 (рис. 2д).

а) c1 = 1

б) a1 = 2

в) an+1 = 2an + 2cn

г) cn+1 = an + 2cn

д) e2n = 2cn–1

Рис. 2. а)

Из A в C за два прыжка можно попасть только одним способом: c1 = 1.

б)

Из A в A за два прыжка можно попасть двумя способами: a1 = 2.

в)

В A можно попасть из C двумя способами и из A двумя способами: an+1 = 2an + 2cn.

г)

В C можно попасть из A одним способом и из C — двумя: cn+1 = an + 2cn.

д)

В E можно попасть из C двумя способами: e2n = 2cn–1.

Как же найти явную формулу для an и cn? Запишем наше рекуррентное соотношение (7) так:

an+1 + cn+1√2 = (an + cn√2)(2 + √2)

(8)

и — как вы уже, конечно, догадались — ещё так:

an+1 – cn+1√2 = (an – cn√2)(2 – √2).

(9)

Отсюда по индукции, пользуясь (7), получаем:

an + cn√2 = (2 + √2)n–1 (a1 + c1√2) = (2 + √2)n,

an – cn√2 = (2 – √2)n–1 (a1 – c1√2) = (2 – √2)n.

Поэтому

cn =

(2 + √2)n – (2 – √2)n

2√2

,

а так как e2n = 2cn–1, получаем окончательно

e2n =

(2 + √2)n–1 – (2 – √2)n–1

√2

, e2n–1 = 0.

Задача решена. Неясно только, как в этой задаче (и в предыдущей задаче 6) можно было додуматься до формул, содержащих ±√2, — ведь в задаче речь идёт о целых числах! (Для участников олимпиады и читателей «Кванта» задача 7 была облегчена тем, что в формулировке указывался ответ — «Квант», 1979, № 11, М595).

Однако «сопряжённые числа» возникли бы совершенно автоматически, если бы мы владели началами линейной алгебры (см. [12]), и применили стандартные правила этой науки к решению уравнений (7). Эти правила предлагают сначала выяснить, какие геометрические прогрессии (an = a0λn, cn = c0λn) удовлетворяют данному рекуррентному соотношению. Значения, для которых такие прогрессии существуют, — они называются характеристическими значениями или собственными числами — определяются из некоторого уравнения (оно тоже называется характеристическим). Для (7) характеристическое уравнение имеет вид λ2 – 4λ + 2 = 0, его корни — как раз 2 + √2 и 2 – √2. Зная эти корни, любое решение рекуррентного соотношения мы можем получить как «линейную комбинацию» соответствующих геометрических прогрессий ([11]). «Начальное условие» (в нашем случае a1 = 2, c1 = 1) определяет нужное нам решение однозначно.

Неудивительно, что даже самые простые рекуррентные целочисленные последовательности, для которых характеристическое уравнение — квадратное с целыми коэффициентами (примеры — те же (6) и (7) или последовательность Фибоначчи 1, 1, 2, 3, 5, 8, ..., Fn+1 = Fn + Fn–1; см. [9], [10]), выражаются, как функции номера, с помощью «сопряжённых» квадратичных иррациональностей.

Заметим, что большее характеристическое число определяет скорость роста последовательности: при больши́х n в задаче 7 en  (2 + √2)n/√2. Можно сказать это ещё так:

lim

n → ∞

en+1

en

= 2 + √2.

Для задачи 6 аналогичное наблюдение:

lim

n → ∞

xn

yn

= √2.

Интересное продолжение этого факта мы увидим в следующей задаче с бо́льшим числом «сопряжённых» иррациональностей.

Поочерёдно меняем все знаки

8 (М520). Пусть

(1 + √2 + √3)n = qn + rn√2 + sn√3 + tn√6,

где qn, rn, sn и tn — целые числа. Найти пределы

lim

n → ∞

rn

qn

,

lim

n → ∞

sn

qn

,

lim

n → ∞

tn

qn

.

Конечно, мы здесь можем выразить (qn+1; rn+1; sn+1; tn+1) через (qn; rn; sn; tn), пользуясь тем, что

qn+1 + rn+1√2 + sn+1√3 + tn+1√6 = (1 + √2 + √3)(qn + rn√2 + sn√3 + tn√6),

но, наученные опытом, мы уже знаем, что более простые формулы получаются не для самих чисел qn, rn, sn, tn, a для некоторых их комбинаций. Одну такую комбинацию мы уже знаем: это

qn + rn√2 + sn√3 + tn√6 = (1 + √2 + √3)n.

Нетрудно сообразить, каковы будут другие. Рассмотрим вместе с данным числом

λ1 = 1 + √2 + √3,

ещё три «сопряжённых»:

λ2 = 1 – √2 + √3, λ3 = 1 + √2 – √3, λ4 = 1 – √2 – √3.

Тогда

qn – rn√2 + sn√3 – tn√6 = λ2n,

qn + rn√2 – sn√3 – tn√6 = λ3n,

qn – rn√2 – sn√3 + tn√6 = λ4n.

Мы можем выразить qn, rn, sn, tn через λ1, λ2, λ3, λ4:

qn =

λ1n + λ2n + λ3n + λ4n

4

,

sn =

λ1n + λ2n – λ3n – λ4n

4√3

,

rn =

λ1n – λ2n + λ3n – λ4n

4√2

,

tn =

λ1n – λ2n – λ3n + λ4n

4√6

.

Теперь заметим, что λ1 > |λ2|, λ1 > |λ3|, λ1 > |λ4|. Поэтому

lim

n → ∞

rn

qn

=

lim

n → ∞

1 – (λ2/λ1)n + (λ3/λ1)n – (λ4/λ1)n

1 + (λ2/λ1)n + (λ3/λ1)n + (λ4/λ1)n

·

1

√2

=

1

√2

.

Аналогично найдём, что

lim

n → ∞

sn

qn

=

1

√3

и

lim

n → ∞

tn

qn

=

1

√6

.

Мы говорили выше, что сопряжённые числа a ± b√d возникают часто как корни квадратного уравнения с целыми коэффициентами. В связи с последней задачей возникает такое желание:

9. Написать уравнение с целыми коэффициентами, один из корней которого равен 1 + √2 + √3.

Возникает подозрение, что вместе с этим числом λ1 уравнению с целыми коэффициентами удовлетворяют и сопряжённые, которые в решении предыдущей задачи мы обозначили λ2, λ3, λ4. Нужное уравнение можно записать так:

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5231
Авторов
на СтудИзбе
425
Средний доход
с одного платного файла
Обучение Подробнее